Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Michigan Technological University

Cluster finding

Articles 1 - 2 of 2

Full-Text Articles in Physics

Deep-Learning Based Reconstruction Of The Shower Maximum Xmax Using The Water-Cherenkov Detectors Of The Pierre Auger Observatory, A. Aab, P. Abreu, M. Aglietta, J. M. Albury, I. Allekotte, A. Almela, B. Fick, D. F. Nitz, A. Puyleart, Et. Al. Jul 2021

Deep-Learning Based Reconstruction Of The Shower Maximum Xmax Using The Water-Cherenkov Detectors Of The Pierre Auger Observatory, A. Aab, P. Abreu, M. Aglietta, J. M. Albury, I. Allekotte, A. Almela, B. Fick, D. F. Nitz, A. Puyleart, Et. Al.

Michigan Tech Publications

The atmospheric depth of the air shower maximum Xmax is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of Xmax are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of Xmax from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of Xmax. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov …


Design, Upgrade And Characterization Of The Silicon Photomultiplier Front-End For The Amiga Detector At The Pierre Auger Observatory, A. Aab, P. Abreu, M. Aglietta, J. M. Albury, I. Allekotte, A. Almela, B. Fick, D. F. Nitz, A. Puyleart, Et Al. Jan 2021

Design, Upgrade And Characterization Of The Silicon Photomultiplier Front-End For The Amiga Detector At The Pierre Auger Observatory, A. Aab, P. Abreu, M. Aglietta, J. M. Albury, I. Allekotte, A. Almela, B. Fick, D. F. Nitz, A. Puyleart, Et Al.

Michigan Tech Publications

AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2. Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light …