Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

City University of New York (CUNY)

Heavy Quark Physics

Articles 1 - 2 of 2

Full-Text Articles in Physics

Master Integrals For The Two-Loop, Non-Planar Qcd Corrections To Top-Quark Pair Production In The Quark-Annihilation Channel, Matteo Becchetti, Roberto Bonciani, Valerio Casconi, Andrea Ferroglia, Simone Lavacca, Andreas Von Manteuffel Aug 2019

Master Integrals For The Two-Loop, Non-Planar Qcd Corrections To Top-Quark Pair Production In The Quark-Annihilation Channel, Matteo Becchetti, Roberto Bonciani, Valerio Casconi, Andrea Ferroglia, Simone Lavacca, Andreas Von Manteuffel

Publications and Research

We present the analytic calculation of the Master Integrals for the two-loop, non-planar topologies that enter the calculation of the amplitude for top-quark pair hadroproduction in the quark-annihilation channel. Using the method of differential equations, we expand the integrals in powers of the dimensional regulator ε and determine the expansion coefficients in terms of generalized harmonic polylogarithms of two dimensionless variables through to weight four.


Boosted Top Production: Factorization And Resummation For Single-Particle Inclusive Distributions, Andrea Ferroglia, Simone Marzani, Ben D. Pecjak, Li Lin Yang Jan 2014

Boosted Top Production: Factorization And Resummation For Single-Particle Inclusive Distributions, Andrea Ferroglia, Simone Marzani, Ben D. Pecjak, Li Lin Yang

Publications and Research

We study single-particle inclusive (1PI) distributions in top-quark pair production at hadron colliders, working in the highly boosted regime where the top-quarkpTis much larger than its mass. In particular, we derive a novel factorization formula validin the small-mass and soft limits of the differential partonic cross section. This providesa framework for the simultaneous resummation of soft gluon corrections and small-mass logarithms, and also an efficient means of obtaining higher-order corrections to the differential cross section in this limit. The result involves five distinct one-scale functions, three of which arise through the subfactorization of soft real radiation in the small-mass limit. …