Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

City University of New York (CUNY)

Discipline
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 181

Full-Text Articles in Physics

Peculiar Optical Properties Of Bilayer Silicene Under The Influence Of External Electric And Magnetic Fields, Thi-Nga Do, Godfrey Gumbs, Po-Hsin Shih, Danhong Huang, Chih-Wei Chiu, Chia-Yun Chen, Ming-Fa Lin Jan 2019

Peculiar Optical Properties Of Bilayer Silicene Under The Influence Of External Electric And Magnetic Fields, Thi-Nga Do, Godfrey Gumbs, Po-Hsin Shih, Danhong Huang, Chih-Wei Chiu, Chia-Yun Chen, Ming-Fa Lin

Publications and Research

We conduct a comprehensive investigation of the effect of an applied electric field on the optical and magneto-optical absorption spectra for AB-bt (bottom-top) bilayer silicene. The generalized tightbinding model in conjunction with the Kubo formula is efficiently employed in the numerical calculations. The electronic and optical properties are greatly diversified by the buckled lattice structure, stacking configuration, intralayer and interlayer hopping interactions, spin-orbital couplings, as well as the electric and magnetic fields (Ez ˆz & Bz ˆz ). An electric field induces spin-split electronic states, a semiconductor-metal phase transitions and the Dirac cone formations in different valleys, leading to the special absorption ...


New Perspectives On The Schrödinger-Pauli Theory Of Electrons: Part I, Viraht Sahni Jan 2019

New Perspectives On The Schrödinger-Pauli Theory Of Electrons: Part I, Viraht Sahni

Publications and Research

Schrödinger-Pauli (SP) theory is a description of electrons in the presence of a static electromagnetic field in which the interaction of the magnetic field with both the orbital and spin moments is explicitly considered. The theory is described from the new perspective of the individual electron via its equation of motion or ‘Quantal Newtonian’ first law. The law is in terms of ‘classical’ fields whose sources are quantum mechanical expectation values of Hermitian operators taken with respect to the system wave function. The law states that each electron experiences an external and an internal field, the sum of which vanish ...


New Perspectives On The Schrödinger-Pauli Theory Of Electrons: Part Ii: Application To The Triplet State Of A Quantum Dot In A Magnetic Field, Marlina Slamet, Viraht Sahni Jan 2019

New Perspectives On The Schrödinger-Pauli Theory Of Electrons: Part Ii: Application To The Triplet State Of A Quantum Dot In A Magnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

The Schrödinger-Pauli (SP) theory of electrons in the presence of a static electromagnetic field can be described from the perspective of the individual electron via its equation of motion or 'Quantal Newtonian' first law. The law is in terms of 'classical' fields whose sources are quantum-mechanical expectation values of Hermitian operators taken with respect to the wave function. The law states that the sum of the external and internal fields experienced by each electron vanishes. The external field is the sum of the binding electrostatic and Lorentz fields. The internal field is the sum of fields representative of properties of ...


Computational Techniques For Scattering Amplitudes, Juliano A. Everett Dec 2018

Computational Techniques For Scattering Amplitudes, Juliano A. Everett

Publications and Research

Scattering amplitudes in quantum field theory can be described as the probability of a scattering process to happen within a high energy particle interaction, as well as a bridge between experimental measurements and the prediction of the theory.

In this research project, we explore the Standard Model of Particle Theory, it’s representation in terms of Feynman diagrams and the algebraic formulas associated with each combination.

Using the FeynArts program as a tool for generating Feynman diagrams, we evaluate the expressions of a set of physical processes, and explain why these techniques become necessary to achieve this goal.


Impact Of Fiber Parameters On Edfa And/Or Raman Amplified High-Spectral-Efficiency Coherent Wdm Transmissions, Lufeng Leng Nov 2018

Impact Of Fiber Parameters On Edfa And/Or Raman Amplified High-Spectral-Efficiency Coherent Wdm Transmissions, Lufeng Leng

Publications and Research

The impact of fiber properties is investigated for coherent systems employing polarization-division multiplexed high-level quadrature amplitude modulation, wavelength-division multiplexing, and erbium-doped fiber amplifier and/or distributed Raman amplification. This is done by comparing the performances of fiber links of various attenuation coefficients and effective areas via experimentally verified analytical methods. Results show that the excess noise, which originates at amplifiers compensating for the losses of filters and switches located between fiber spans, can weaken or even diminish the performance enhancement brought about by lowering the fiber attenuation coefficient, especially if distributed Raman amplification is employed. This leads to the difference ...


Study Of The Kinetic Energy Densities Of Electrons As Applied To Quantum Dots In A Magnetic Field, Marlina Slamet, Viraht Sahni Oct 2018

Study Of The Kinetic Energy Densities Of Electrons As Applied To Quantum Dots In A Magnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

There are three expressions for the kinetic energy density t(r) expressed in terms of its quantal source, the single‐particle density matrix: tA(r), the integrand of the kinetic energy expectation value; tB(r), the trace of the kinetic energy tensor; tC(r), a virial form in terms of the 'classical' kinetic field. These kinetic energy densities are studied by application to 'artificial atoms' or quantum dots in a magnetic field in a ground and excited singlet state. A comparison with the densities for natural atoms and molecules in their ground state is made. The near ...


The Diverse Magneto-Optical Selection Rules In Bilayer Black Phosphorus, Jhao-Ying Wu, Szu-Chao Chen, Thi-Nga Do, Wu-Pei Su, Godfrey Gumbs, Ming-Fa Lin Sep 2018

The Diverse Magneto-Optical Selection Rules In Bilayer Black Phosphorus, Jhao-Ying Wu, Szu-Chao Chen, Thi-Nga Do, Wu-Pei Su, Godfrey Gumbs, Ming-Fa Lin

Publications and Research

The magneto-optical properties of bilayer phosphorene is investigated by the generalized tight-binding model and the gradient approximation. The vertical inter-Landau-level transitions, being sensitive to the polarization directions, are mainly determined by the spatial symmetries of sub-envelope functions on the distinct sublattices. The anisotropic excitations strongly depend on the electric and magnetic fields. A uniform perpendicular electric field could greatly diversify the selection rule, frequency, intensity, number and form of symmetric absorption peaks. Specifically, the unusual magneto-optical properties appear beyond the critical field as a result of two subgroups of Landau levels with the main and side modes. The rich and ...


Multi Institutional Quantitative Phantom Study Of Yttrium-90 Pet In Pet/Mri: The Mr-Quest Study, Nicole M. Maughan, Mootaz Eldib, David Faul, Maurizio Conti, Mattijs Elschot, Karin Knešaurek, Francesca Leek, David Townsend, Frank P. Difilippo, Kimberly Jackson, Stephan G. Nekolla, Mathias Lukas, Michael Tapner, Parag J. Parikh, Richard Laforest Apr 2018

Multi Institutional Quantitative Phantom Study Of Yttrium-90 Pet In Pet/Mri: The Mr-Quest Study, Nicole M. Maughan, Mootaz Eldib, David Faul, Maurizio Conti, Mattijs Elschot, Karin Knešaurek, Francesca Leek, David Townsend, Frank P. Difilippo, Kimberly Jackson, Stephan G. Nekolla, Mathias Lukas, Michael Tapner, Parag J. Parikh, Richard Laforest

Publications and Research

Background

Yttrium-90 (90Y) radioembolization involves the intra-arterial delivery of radioactive microspheres to treat hepatic malignancies. Though this therapy involves careful pre-treatment planning and imaging, little is known about the precise location of the microspheres once they are administered. Recently, there has been growing interest post-radioembolization imaging using positron-emission tomography (PET) for quantitative dosimetry and identifying lesions that may benefit from additional salvage therapy. In this study, we aim to measure the inter-center variability of 90Y PET measurements as measured on PET/MRI in preparation for a multi-institutional prospective phase I/II clinical trial.

Eight institutions participated in this ...


Diy Science Sims, James Hedberg Apr 2018

Diy Science Sims, James Hedberg

Open Educational Resources

No abstract provided.


Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni Mar 2018

Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni

Publications and Research

Dissipative effects arise in an electronic system when it interacts with a time-dependent environment. Here, the Schrödinger theory of electrons in an electromagnetic field including dissipative effects is described from a new perspective. Dissipation is accounted for via the effective Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of the individual electron: the corresponding equation of motion for the electron or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law, each electron experiences an external field comprised of a binding electric field, the Lorentz field, and the electromagnetic field ...


Demonstration Of Ultra-High Recyclable Energy Densities In Domain-Engineered Ferroelectric Films, Hongbo Cheng, Jun Ouyang, Yun-Xiang Zhang, David J. Ascienzo, Yao Li, Yu-Yao Zhao, Yuhang Ren Dec 2017

Demonstration Of Ultra-High Recyclable Energy Densities In Domain-Engineered Ferroelectric Films, Hongbo Cheng, Jun Ouyang, Yun-Xiang Zhang, David J. Ascienzo, Yao Li, Yu-Yao Zhao, Yuhang Ren

Publications and Research

Dielectric capacitors have the highest charge/discharge speed among all electrical energy devices, but lag behind in energy density. Here we report dielectric ultracapacitors based on ferroelectric films of Ba(Zr0.2,Ti0.8)O3 which display high-energy densities (up to 166 J cm–3) and efficiencies (up to 96%). Different from a typical ferroelectric whose electric polarization is easily saturated, these Ba(Zr0.2,Ti0.8)O3 films display a much delayed saturation of the electric polarization, which increases continuously from nearly zero at remnant in a multipolar state, to a large value under the maximum electric field, leading ...


Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko Nov 2017

Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko

Publications and Research

We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.


Experiential Learning Opportunity (Elo) And Utilization Of Field-And-Data- Based Information Obtained Through The Infusion Of Technology: Highlights On Nasa Stem And Earth Science Curricula, Nazrul I. Khandaker, Matthew Khargie, Shuayb Siddiqu, Sol De Leon, Katina Singh, Newrence Wills, Krishna Mahibar Oct 2017

Experiential Learning Opportunity (Elo) And Utilization Of Field-And-Data- Based Information Obtained Through The Infusion Of Technology: Highlights On Nasa Stem And Earth Science Curricula, Nazrul I. Khandaker, Matthew Khargie, Shuayb Siddiqu, Sol De Leon, Katina Singh, Newrence Wills, Krishna Mahibar

Publications and Research

There is a greater emphasis on hands-on involvement and critical thinking skills in the geosciences and other STEM fields to inspire and engage K- 16 students to value scientific content and enable them to discover the well-documented nature of the fundamental scientific principles needed to explain various earth science and other STEM-related core phenomena. NASA MAA curricula are ideal for engaging K1-16 students in this context, since grade-specific lesson plans open-up a plethora of pedagogically sound and relevant earth science activities. These include earth’s materials and properties, meteorites, robotics, hot air balloon, flight simulation, star gazing, material science, crystal ...


Stochastic Resonance In A Proton Pumping Complex I Of Mitochondria Membranes, Davneet Kaur, Ilan Filonenko, Lev Mourokh, Cornelius Fendler, Robert H. Blick Sep 2017

Stochastic Resonance In A Proton Pumping Complex I Of Mitochondria Membranes, Davneet Kaur, Ilan Filonenko, Lev Mourokh, Cornelius Fendler, Robert H. Blick

Publications and Research

We make use of the physical mechanism of proton pumping in the so-called Complex I within mitochondria membranes. Our model is based on sequential charge transfer assisted by conformational changes which facilitate the indirect electron-proton coupling. The equations of motion for the proton operators are derived and solved numerically in combination with the phenomenological Langevin equation describing the periodic conformational changes. We show that with an appropriate set of parameters, protons can be transferred against an applied voltage. In addition, we demonstrate that only the joint action of the periodic energy modulation and thermal noise leads to efficient uphill proton ...


Holography For Field Theory Solitons, Sophia K. Domokos, Andrew B. Royston Jul 2017

Holography For Field Theory Solitons, Sophia K. Domokos, Andrew B. Royston

Publications and Research

We extend a well-known D-brane construction of the AdS/dCFT correspondence to non-abelian defects. We focus on the bulk side of the correspondence and show that there exists a regime of parameters in which the low-energy description consists of two approximately decoupled sectors. The two sectors are gravity in the ambient spacetime, and a six-dimensional supersymmetric Yang-Mills theory. The Yang-Mills theory is defined on a rigid AdS4 S2 background and admits sixteen supersymmetries. We also consider a one-parameter deformation that gives rise to a family of Yang-Mills theories on asymptotically AdS4 S2 spacetimes, which are invariant under eight supersymmetries. With ...


Quadrality For Supersymmetric Matrix Models, Sebastian Franco, Sangmin Lee, Rak-Kyeong Seong, Cumrun Vafa Jul 2017

Quadrality For Supersymmetric Matrix Models, Sebastian Franco, Sangmin Lee, Rak-Kyeong Seong, Cumrun Vafa

Publications and Research

We introduce a new duality for N = 1 supersymmetric gauged matrix models. This 0d duality is an order 4 symmetry, namely an equivalence between four different theories, hence we call it Quadrality. Our proposal is motivated by mirror symmetry, but is not restricted to theories with a D-brane realization and holds for general N = 1 matrix models. We present various checks of the proposal, including the matching of: global symmetries, anomalies, deformations and the chiral ring. We also consider quivers and the corresponding quadrality networks. Finally, we initiate the study of matrix models that arise on the worldvolume of D ...


Light-Induced Electrohydrodynamic Instability In Plasmonically Absorbing Gold Nanofluids, Sujan Shrestha, Luat T. Vuong, Jorge Luis Dominguez-Juarez Jun 2017

Light-Induced Electrohydrodynamic Instability In Plasmonically Absorbing Gold Nanofluids, Sujan Shrestha, Luat T. Vuong, Jorge Luis Dominguez-Juarez

Publications and Research

Plasmonically absorbing nanofluids exhibit light-induced electrokinetics. We measure an electrical response to the light-induced Rayleigh-Bénard-Marangoni convective instabilities in gold-polyvinylpyrrolidone (PVP) nanoparticles (NPs) suspended in isopropanol and water. Microampere current oscillations are measured and attributed to the presence of the Au-PVP NPs with negative zeta potential, in correspondence with the accompanying thermal lens oscillations and a nanofluid thermoelectric effect. The measured electrical oscillations represent an electrohydrodynamic stability driven by light, one among many that should be observed with plasmonic nanoparticles in liquids.


Tunneling Of Hybridized Pairs Of Electrons Through A One-Dimensional Channel, Godfrey Gumbs, Danghong Huang, Julie Hon, M. Pepper, Sanjeev Kumar May 2017

Tunneling Of Hybridized Pairs Of Electrons Through A One-Dimensional Channel, Godfrey Gumbs, Danghong Huang, Julie Hon, M. Pepper, Sanjeev Kumar

Publications and Research

Recently, the electron transport through a quasi-one dimensional (quasi-1D) electron gas was investigated experimentally as a function of the confining potential. We present a physical model for quantum ballistic transport of electrons through a short conduction channel, and investigate the role played by the Coulomb interaction in modifying the energy levels of twoelectron states at low temperatures as the width of the channel is increased. In this regime, the effect of the Coulomb interaction on the two-electron states has been shown to lead to four split energy levels, including two anticrossings and two crossinglevel states. Due to the interplay between ...


General Astronomy 110 Syllabus (Zero Textbook Cost), Carlos Chaparro May 2017

General Astronomy 110 Syllabus (Zero Textbook Cost), Carlos Chaparro

Open Educational Resources

The spring 2017 syllabus for the General Astronomy Course (AST 110), developed as part of the textbook free courseware initiative at Borough of Manhattan Community College.


Glass Polymorphism In Glycerol–Water Mixtures: I. A Computer Simulation Study, David A. Jahn, Jessina Wong, Johannes Bachler, Thomas Loerting, Nicolas Giovambattista Mar 2017

Glass Polymorphism In Glycerol–Water Mixtures: I. A Computer Simulation Study, David A. Jahn, Jessina Wong, Johannes Bachler, Thomas Loerting, Nicolas Giovambattista

Publications and Research

We perform out-of-equilibrium molecular dynamics (MD) simulations of water–glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA–HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/ decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration wg = 0–13 ...


Orbifold Reduction And 2d (0,2) Gauge Theories, Sebastian Franco, Sangmin Lee, Rak-Kyeong Seong Mar 2017

Orbifold Reduction And 2d (0,2) Gauge Theories, Sebastian Franco, Sangmin Lee, Rak-Kyeong Seong

Publications and Research

We introduce Orbifold Reduction, a new method for generating 2d (0; 2) gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from 4d N = 1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating 2d (0; 2) theories with a brane realization. We present three practical applications of the new algorithm: the connection between 4d Seiberg duality and 2d triality, a combinatorial method for generating theories related by triality ...


Nnll Resummation For The Associated Production Of A Top Pair And A Higgs Boson At The Lhc, Alessandro Broggio, Andrea Ferroglia, Ben D. Pecjak, Li Lin Yang Feb 2017

Nnll Resummation For The Associated Production Of A Top Pair And A Higgs Boson At The Lhc, Alessandro Broggio, Andrea Ferroglia, Ben D. Pecjak, Li Lin Yang

Publications and Research

We study the resummation of soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at the Large Hadron Collider. Starting from a soft-gluon resummation formula derived in previous work, we develop a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with differential distributions. We use this tool to study the phenomenological impact of the resummation to next-to-next-to-leading logarithmic (NNLL) accuracy, finding that these corrections increase the total cross section and the differential distributions with respect to NLO calculations of the same observables.


Brane Brick Models In The Mirror, Sebastian Franco, Sangmin Lee, Rak-Kyeong Seong, Cumrun Vafa Feb 2017

Brane Brick Models In The Mirror, Sebastian Franco, Sangmin Lee, Rak-Kyeong Seong, Cumrun Vafa

Publications and Research

Brane brick models are Type IIA brane configurations that encode the 2d N = (0; 2) gauge theories on the worldvolume of D1-branes probing toric Calabi-Yau 4-folds. We use mirror symmetry to improve our understanding of this correspondence and to provide a systematic approach for constructing brane brick models starting from geometry. The mirror configuration consists of D5-branes wrapping 4-spheres and the gauge theory is determined by how they intersect. We also explain how 2d (0; 2) triality is realized in terms of geometric transitions in the mirror geometry. Mirror symmetry leads to a geometric unification of dualities in different dimensions ...


Supergroups In Critical Dimensions And Division Algebras, Čestmir Burdik, Sultan Catto, Yasemin Gürcan, Amish Khalfan, Levent Kurt, V. Kato La Jan 2017

Supergroups In Critical Dimensions And Division Algebras, Čestmir Burdik, Sultan Catto, Yasemin Gürcan, Amish Khalfan, Levent Kurt, V. Kato La

Publications and Research

We establish a link between classical heterotic strings and the groups of the magic square associated with Jordan algebras, allowing for a uniform treatment of the bosonic and superstring sectors of the heterotic string.


Electron Correlations In An Excited State Of A Quantum Dot In A Uniform Magnetic Field, Marlina Slamet, Viraht Sahni Jan 2017

Electron Correlations In An Excited State Of A Quantum Dot In A Uniform Magnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

Electron correlations in a two-electron two-dimensional ‘artificial atom’ or quantum dot (with harmonic confining potential) in the presence of a uniform magnetic field in an excited singlet state are studied via quantal density functional theory (QDFT). QDFT allows for the separation of the electron correlations due to the Pauli exclusion principle and Coulomb repulsion, as well as the determination of the contribution of these correlations to the kinetic energy. The QDFT mapping is from the excited state of the quantum dot to one of noninteracting fermions in their ground state possessing the same basic variables of the density and physical ...


Generalization Of The Schrödinger Theory Of Electrons, Viraht Sahni Jan 2017

Generalization Of The Schrödinger Theory Of Electrons, Viraht Sahni

Publications and Research

The Schrödinger theory for a system of electrons in the presence of both a static and time-dependent electromagnetic field is generalized so as to exhibit the intrinsic self-consistent nature of the corresponding Schrödinger equations. This is accomplished by proving that the Hamiltonian in the stationary-state and time-dependent cases {\hat{H}; \hat{H}(t)} are exactly known functionals of the corresponding wave functions {\Psi; \Psi(t)}, i.e. \hat{H} = \hat{H}[\Psi] and \hat{H}(t) = \hat{H}[\Psi(t)]. Thus, the Schrödinger equations may be written as \hat{H}[\Psi]\Psi = E[\Psi]\Psi and \hat{H}[\Psi(t ...


Schrödinger Theory Of Electrons In Electromagnetic Fields: New Perspectives, Viraht Sahni, Xiao-Yin Pan Jan 2017

Schrödinger Theory Of Electrons In Electromagnetic Fields: New Perspectives, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The Schrödinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent "Quantal Newtonian" law (or differential virial theorem). (The time-independent law, a special case, provides a similar description of stationary-state theory). These laws are in terms of "classical" fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) in addition to the external field, each electron experiences an internal field whose components are representative of a specific property of ...


Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian Jan 2017

Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian

Publications and Research

Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build ...


Generation Of Flower High-Order Poincaré Sphere Laser Beams From A Spatial Light Modulator, T. H. Lu, T. D. Huang, J. G. Wang, L. W. Wang, Robert R. Alfano Dec 2016

Generation Of Flower High-Order Poincaré Sphere Laser Beams From A Spatial Light Modulator, T. H. Lu, T. D. Huang, J. G. Wang, L. W. Wang, Robert R. Alfano

Publications and Research

We propose and experimentally demonstrate a new complex laser beam with inhomogeneous polarization distributions mapping onto high-order Poincaré spheres (HOPSs). The complex laser mode is achieved by superposition of Laguerre-Gaussian modes and manifests exotic flower-like localization on intensity and phase profiles. A simple optical system is used to generate a polarization-variant distribution on the complex laser mode by superposition of orthogonal circular polarizations with opposite topological charges. Numerical analyses of the polarization distribution are consistent with the experimental results. The novel flower HOPS beams can act as a new light source for photonic applications.


Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan Nov 2016

Properties Of The Schrödinger Theory Of Electrons In Electromagnetic Fields, Viraht Sahni, Xiao-Yin Pan

Publications and Research

The Schrödinger theory of electrons in an external electromagnetic field can be described from the perspective of the individual electron via the ‘Quantal Newtonian’ laws (or differential virial theorems). These laws are in terms of ‘classical’ fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) In addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects ...