Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat Jan 2022

Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat

Publications and Research

We previously proposed that entanglement across a planar surface can be obtained from the partition function on a Euclidean hourglass geometry. Here we extend the prescription to spherical entangling surfaces in conformal field theory. We use the prescription to evaluate log terms in the entropy of a conformal field theory in two dimensions, a conformally coupled scalar in four dimensions, and a Maxwell field in four dimensions. For Maxwell we reproduce the extractable entropy obtained by Soni and Trivedi. We take this as evidence that the hourglass prescription provides a Euclidean technique for evaluating extractable entropy in quantum field theory.


Graded Quivers, Generalized Dimer Models And Toric Geometry, Sebastián Franco, Azeem Hasan Nov 2019

Graded Quivers, Generalized Dimer Models And Toric Geometry, Sebastián Franco, Azeem Hasan

Publications and Research

The open string sector of the topological B-model on CY (m+2)-folds is described by m-graded quivers with superpotentials. This correspondence extends to general m the well known connection between CY (m+2)-folds and gauge theories on the world-volume of D(5-2m)-branes for m = 0, ..., 3. We introduce m-dimers, which fully encode the m-graded quivers and their superpotentials, in the case in which the CY (m+2)-folds are toric. Generalizing the well known m = 1,2 cases, m-dimers significantly simplify the connection between geometry and m-graded quivers. A key …


Higher Cluster Categories And Qft Dualities, Sebastián Franco, Gregg Musiker Jan 2018

Higher Cluster Categories And Qft Dualities, Sebastián Franco, Gregg Musiker

Publications and Research

We introduce a unified mathematical framework that elegantly describes minimally supersymmetry gauge theories in even dimensions, ranging from six dimensions to zero dimensions, and their dualities. This approach combines and extends recent developments on graded quivers with potentials, higher Ginzburg algebras, and higher cluster categories (also known as m-cluster categories). Quiver mutations studied in the context of mathematics precisely correspond to the order-(m + 1) dualities of the gauge theories. Our work indicates that these equivalences of quiver gauge theories sit inside an infinite family of such generalized dualities.


Experimental Demonstration Of Topological Effects In Bianisotropic Metamaterials, Alexey P. Slobozhanyuk, Alexander B. Khanikaev, Dmitry S. Filonov, Daria A. Smirnova, Andrey E. Miroshnichenko, Yuri S. Kivshar Mar 2016

Experimental Demonstration Of Topological Effects In Bianisotropic Metamaterials, Alexey P. Slobozhanyuk, Alexander B. Khanikaev, Dmitry S. Filonov, Daria A. Smirnova, Andrey E. Miroshnichenko, Yuri S. Kivshar

Publications and Research

Existence of robust edge states at interfaces of topologically dissimilar systems is one of the most fascinating manifestations of a novel nontrivial state of matter, a topological insulator. Such nontrivial states were originally predicted and discovered in condensed matter physics, but they find their counterparts in other fields of physics, including the physics of classical waves and electromagnetism. Here, we present the first experimental realization of a topological insulator for electromagnetic waves based on engineered bianisotropic metamaterials. By employing the near-field scanning technique, we demonstrate experimentally the topologically robust propagation of electromagnetic waves around sharp corners without backscattering effects.


Differentiability Of Correlations In Realistic Quantum Mechanics, Alejandro Cabrera, Edson De Faria, Enrique Pujals, Charles Tresser Jan 2015

Differentiability Of Correlations In Realistic Quantum Mechanics, Alejandro Cabrera, Edson De Faria, Enrique Pujals, Charles Tresser

Publications and Research

We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed …


The Use Of Statistics In Experimental Physics, Thomas J. Pfaff, Maksim Sipos, M. C. Sullivan, B. G. Thompson, Max Tran Apr 2013

The Use Of Statistics In Experimental Physics, Thomas J. Pfaff, Maksim Sipos, M. C. Sullivan, B. G. Thompson, Max Tran

Publications and Research

Most mathematicians are aware of the importance of statistics in biological sciences, business, and economics, but are less aware that statistics is used every day in experimental physics. This paper gives three interesting examples of how statistics plays a vital role in physics. These examples use the basic statistical tools of residuals analysis and goodness of fit.


Strokes Of Existence: The Connection Of All Things, Mari Gorman Jan 2007

Strokes Of Existence: The Connection Of All Things, Mari Gorman

Graduate Student Publications and Research

Acted or real—and all life is real whether one is acting or not—the common denominator and consistent, ubiquitous reality of life and all behavior is that it manifests in the form of relationships on all scales. But what is a relationship? Until now, the answer to this question has not been sufficiently known. As a result of many years of empirical research that began with the aim of discovering what is going on in a gifted actor when s/he is playing a character that can be observed and experienced as a living, intuitive being, and based on the knowledge that …


Vortices And Chaos In The Quantum Fluid, D. A. Wisniacki, E. R. Pujals, F. Borondo Jan 2007

Vortices And Chaos In The Quantum Fluid, D. A. Wisniacki, E. R. Pujals, F. Borondo

Publications and Research

The motion of a single vortex originates chaos in the quantum fluid defined in Bohm's interpretation of quantum mechanics. Here we analize this situation in a very simple case: one single vortex in a rectangular billiard.