Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Jan 2013

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Faculty Publications

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal Mar 2007

Investigation Of Cdznte Crystal Defects Using Scanning Probe Microscopy, Goutam Koley, J. Liu, K. C. Mandal

Faculty Publications

No abstract provided.


Preparation, Structural Characterization, And Dynamic Properties Investigation Of Permalloy Antidot Arrays, Andriy Vovk, Leszek M. Malkinski, Scott L. Whittenburg, Charles O'Connor, Jin-Seung Jung, Suk-Hong Min May 2005

Preparation, Structural Characterization, And Dynamic Properties Investigation Of Permalloy Antidot Arrays, Andriy Vovk, Leszek M. Malkinski, Scott L. Whittenburg, Charles O'Connor, Jin-Seung Jung, Suk-Hong Min

Chemistry and Biochemistry Faculty Publications

Regular nanosized structures are considered to be promising materials for magnetic information storage media with high density of information. Recently attention was paid to static and dynamic magnetic properties arising from dimensional confinement in such nanostructures. Here we present an investigation of permalloy antidot arrays of different thicknesses. Thin permalloyfilms of thickness ranging from were deposited on nanoporous membranes with a pore size of . It was found that additional ferromagnetic resonance peaks appear for film thicknesses below , while films with larger thicknesses show resonanceproperties similar to continuous films. A comparison between the filmsdeposited onto Si wafers and porous …


Data Management And Visualization Of X-Ray Diffraction Spectra From Thin Film Ternary Composition Spreads, I. Takeuchi, C. J. Long, O. O. Famodu, M. Murakami, Jason R. Hattrick-Simpers, G. W. Rubloff, M. Stukowski, K. Rajan Jan 2005

Data Management And Visualization Of X-Ray Diffraction Spectra From Thin Film Ternary Composition Spreads, I. Takeuchi, C. J. Long, O. O. Famodu, M. Murakami, Jason R. Hattrick-Simpers, G. W. Rubloff, M. Stukowski, K. Rajan

Faculty Publications

We discuss techniques for managing and visualizing x-ray diffraction spectrum data for thin film composition spreads which map large fractions of ternary compositional phase diagrams. An in-house x-ray microdiffractometer is used to obtain spectra from over 500 different compositions on an individual spread. The MATLAB software is used to quickly organize the data and create various plots from which one can quickly grasp different information regarding structural and phase changes across the composition spreads. Such exercises are valuable in rapidly assessing the “overall” picture of the structural evolution across phase diagrams before focusing in on specific composition regions for detailed …