Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Electron Tunneling In A Strained N-Type Si1−Xgex/Si/Si1−Xgex Double-Barrier Structure, K. M. Hung, T. H. Cheng, W. P. Huang, K. Y. Wang, H. H. Cheng, Greg Sun, R. A. Soref Sep 2008

Electron Tunneling In A Strained N-Type Si1−Xgex/Si/Si1−Xgex Double-Barrier Structure, K. M. Hung, T. H. Cheng, W. P. Huang, K. Y. Wang, H. H. Cheng, Greg Sun, R. A. Soref

Physics Faculty Publications

We report electrical measurements on an n-type Si1−xGex/Si/Si1−xGex double-barrier structure grown on a partially relaxed Si1−yGey buffer layer. Resonance tunneling of Δ4band electrons is demonstrated. This is attributed to the strain splitting in the SiGe buffer layer where the Δ4 band is lowest in energy at the electrode. Since the Δ4 band electrons have a much lighter effective mass along the direction of tunneling current in comparison with that of the Δ2 band electrons, this work presents an advantage over those …


Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li Jun 2008

Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li

Faculty Publications

Hydrogen atmosphere can significantly change the tribological behavior at diamond and diamondlike carbon (DLC) surfaces and the friction-reducing effect depends on the partial pressure of hydrogen. We combined density functional theory modeling and thermodynamic quantities to predict the equilibrium partial pressures of hydrogen at temperature T, PH2 (T), for a fully atomic hydrogen passivated diamondsurface. Above the equilibrium PH2 (T), ultralow friction can be achieved at diamond and DLC surfaces. The calculation agrees well with friction tests at various testing conditions. We also show that PH2 (T) …


Cantilever Based Optical Interfacial Force Microscope, Jeremy R. Bonander, Byung I. Kim Mar 2008

Cantilever Based Optical Interfacial Force Microscope, Jeremy R. Bonander, Byung I. Kim

Physics Faculty Publications and Presentations

We developed a cantilever based optical interfacial force microscopy (COIFM) that employs a microactuated silicon cantilever and optical detection method to establish the measurement of the single molecular interactions using the force feedback technique. Through the direct measurement of the COIFM force-distance curves, we have demonstrated that the COIFM is capable of unveiling structural and mechanical information on interfacial water at the single molecular level over all distances between two hydrophilic surfaces.