Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha Mar 2022

Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha

Faculty Publications

In this work, an attempt has been made to explore numerically the thermo-fluidic transport process in a novel M-shaped enclosure filled with permeable material along with Al2O3-Cu hybrid nanoparticles suspended in water under the influence of a horizontal magnetizing field. To exercise the influence of geometric parameters, a classical trapezoidal cavity is modified with an inverted triangle at the top to construct an M-shaped cavity. The cavity is heated isothermally from the bottom and cooled from the top, whereas the inclined sidewalls are insulated. The role of geometric parameters on the thermal performance is scrutinized thoroughly …


Enhanced Nucleate Boiling On Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings, Xianming Dai, Xinyu Huang, Fanghao Yang, Xiaodong Li, Joshua Sightler, Yingchao Yang, Chen Li Apr 2013

Enhanced Nucleate Boiling On Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings, Xianming Dai, Xinyu Huang, Fanghao Yang, Xiaodong Li, Joshua Sightler, Yingchao Yang, Chen Li

Faculty Publications

Ideal hydrophobic-hydrophilic composite cavities are highly desired to enhance nucleate boiling. However, it is challenging and costly to fabricate these types of cavities by conventional micro/nano fabrication techniques. In this study, a type of hydrophobic-hydrophilic composite interfaces were synthesized from functionalized multiwall carbon nanotubes by introducing hydrophilic functional groups on the pristine multiwall carbon nanotubes. This type of carbon nanotube enabled hydrophobic-hydrophilic composite interfaces were systematically characterized. Ideal cavities created by the interfaces were experimentally demonstrated to be the primary reason to substantially enhance nucleate boiling


Simulation Studying Effects Of Multiple Primary Aberrations On Donut-Shaped Gaussian Beam, Chen Zhang, K. Wang, J. Bai, Y. Liu, Guiren Wang Jan 2013

Simulation Studying Effects Of Multiple Primary Aberrations On Donut-Shaped Gaussian Beam, Chen Zhang, K. Wang, J. Bai, Y. Liu, Guiren Wang

Faculty Publications

In this paper, we demonstrate the variation of donut-shaped depletion pattern which influenced by multiple primary aberrations. The simulation is base on a common stimulation emission of depletion (STED) system composed by Gaussian laser and vortex phase plate. The simulation results are helpful guidelines for analyzing the aberration of depletion patterns in real situations.


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar Jan 2011

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar

Faculty Publications

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li Jun 2008

Predicting The Hydrogen Pressure To Achieve Ultralow Friction And Diamondlike Carbon Surfaces From First Principles, Haibo Guo, Yue Qi, Xiaodong Li

Faculty Publications

Hydrogen atmosphere can significantly change the tribological behavior at diamond and diamondlike carbon (DLC) surfaces and the friction-reducing effect depends on the partial pressure of hydrogen. We combined density functional theory modeling and thermodynamic quantities to predict the equilibrium partial pressures of hydrogen at temperature T, PH2 (T), for a fully atomic hydrogen passivated diamondsurface. Above the equilibrium PH2 (T), ultralow friction can be achieved at diamond and DLC surfaces. The calculation agrees well with friction tests at various testing conditions. We also show that PH2 (T) …


Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey Jan 2008

Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey

Faculty Publications

This paper provides a quantitative comparison and explores the design space of lead zirconium titanate (PZT)–only and PZT-on-silicon length-extensional mode resonators for incorporation into radio frequency microelectromechanical system filters and oscillators. We experimentally measured the correlation of motional impedance (RX) and quality factor (Q) with the resonators’ silicon layer thickness (tSi). For identical lateral dimensions and PZT-layer thicknesses (tPZT), the PZT-on-silicon resonator has higher resonant frequency (fC), higher Q (5100 versus 140), lower RX (51 Ω versus 205 Ω), and better linearity [third-order input intercept …


). Size Dependency Of The Elastic Modulus Of Zno Nanowires: Surface Stress Effect, Guofeng Wang, Xiaodong Li Dec 2007

). Size Dependency Of The Elastic Modulus Of Zno Nanowires: Surface Stress Effect, Guofeng Wang, Xiaodong Li

Faculty Publications

Relation between the elastic modulus and the diameter (D) of ZnOnanowires was elucidated using a model with the calculated ZnOsurface stresses as input. We predict for ZnOnanowires due to surface stress effect: (1) when D>20nm, the elastic modulus would be lower than the bulk modulus and decrease with the decreasing diameter, (2) when 20nm>D>2nm, the nanowires with a longer length and a wurtzite crystal structure could be mechanically unstable, and (3) when D<2nm, the elastic modulus would be higher than that of the bulk value and increase with a decrease in nanowire diameter.


Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li Oct 2007

Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li

Faculty Publications

Nanoindentation in conjunction with piezoresponse force microscopy was used to study domain switching and to measure the mechanical properties of individual ferroelectric domains in a tetragonal BaTiO3 single crystal. It was found that nanoindentation has induced local domain switching; the a and c domains of BaTiO3 have different elastic moduli but similar hardness.Nanoindentationmodulus mapping on the a and c domains further confirmed such difference in elasticity. Finite element modeling was used to simulate the von Mises stress and plastic strain profiles of the indentations on both a and c domains, which introduces a much higher stress level than …


Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li Jul 2006

Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li

Faculty Publications

Nano-/micronecklaces with SiO2 beads in boron strings were synthesized by simply sublimating the desired powders in a sealed quartz tube at high temperature. The boron strings have a rectangular cross section with width varying from 80to1000nm while the SiO2 beads bear either spindle or spherical shape with a size ranging from 100nmto5μm. The spacing between the SiO2 beads is uniform in each boron string. Both the boron strings and the SiO2 beads are amorphous and free of defects. The supersaturated vapors of silicon and oxygen induced the SiO2 bead formation.


Bistable Operation Of A Two-Section 1.3-Mm Inas Quantum Dot Laser—Absorption Saturation And The Quantum Confined Stark Effect, Xiaodong Huang, A. Stintz, Hua Li, Audra Rice, G. T. Liu, L.F. Lester, Julian Cheng, K.J. Malloy Mar 2001

Bistable Operation Of A Two-Section 1.3-Mm Inas Quantum Dot Laser—Absorption Saturation And The Quantum Confined Stark Effect, Xiaodong Huang, A. Stintz, Hua Li, Audra Rice, G. T. Liu, L.F. Lester, Julian Cheng, K.J. Malloy

Faculty Publications

Room temperature, continuous-wave bistability was observed in oxide-confined, two-section, 1.3- m quantum-dot (QD) lasers with an integrated intracavity quantum-dot saturable absorber. The origin of the hysteresis and bistability were shown to be due to the nonlinear saturation of the QD absorption and the electroabsorption induced by the quantum confined Stark effect.


Development Of Strength Theories For Random Fiber Composites, Victor Giurgiutiu Jan 1994

Development Of Strength Theories For Random Fiber Composites, Victor Giurgiutiu

Faculty Publications

A ressessment of existing theories for calculating the strength of random and quasi-random fiber composites is presented. Fundamental aspects regarding the physical model, macromechanics analysis, fiber distribution functions, generalized failure criterion, and progressive versus sudden failure models are covered first. Progressive ductile failure, progressive brittle failure, and sudden brittle failure are treated in detail. In each case, the original theory is briefly reviewed, and then its extensions accompanied by numerical examples are presented. Several limitations originally imposed by Hahn, such as the monotonically nonincreasing requirement on the failure strain curve, are lifted and the mathematical formulations are generalized. Some common …


Several Considerations Regarding The Variable Length Blade Rotor, Bogdan Popescu, Victor Giurgiutiu Jan 1994

Several Considerations Regarding The Variable Length Blade Rotor, Bogdan Popescu, Victor Giurgiutiu

Faculty Publications

No abstract provided.