Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Mechanical Engineering

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 197

Full-Text Articles in Physics

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti Nov 2023

Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti

Mechanical and Aerospace Engineering Faculty Publications

Inertial particles in wall-bounded turbulence are known to form streaks, but experimental evidence and predictive understanding of this phenomenon is lacking, especially in regimes relevant to atmospheric flows. We carry out wind tunnel measurements to investigate this process, characterizing the transport of microscopic particles suspended in turbulent boundary layers. The friction Reynolds number Re𝜏 = O(104) allows for significant scale separation and the emergence of large-scale motions, while the range of viscous Stokes number St+ = 18–870 is relevant to the transport of dust and fine sand in the atmospheric surface layer. We …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman Sep 2023

Trumpet Directivity From A Rotating Semicircular Array, Samuel D. Bellows, Joseph E. Avila, Timothy W. Leishman

Directivity

The directivity function of a played musical instrument describes the angular dependence of its acoustic radiation and diffraction about the instrument, musician, and musician’s chair. Directivity influences sound in rehearsal, performance, and recording environments and signals in audio systems. Because high-resolution, spherically comprehensive measurements of played musical instruments have been unavailable in the past, the authors have undertaken research to produce and share such data for studies of musical instruments, simulations of acoustical environments, optimizations of microphone placements, and other applications. The authors acquired the data from repeated chromatic scales produced by a trumpet played at mezzo-forte in an anechoic …


Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim Apr 2023

Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd Jan 2023

Gamelan Gong Directivity Dataset, Samuel D. Bellows, Dallin T. Harwood, Kent L. Gee, Micah R. Shepherd

Directivity

No abstract provided.


Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur Jan 2023

Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur

Faculty Journal Articles

Many open-channel turbulent flow studies have been focused on highly constrained conditions. Thus, it is rather conventional to note such flows as being fully developed, fully turbulent, and unaffected by sidewalls and free surface disturbances. However, many real-life flow phenomena in natural water bodies and artificially installed drain channels are not as ideal. This work is aimed at studying some of these unconstrained conditions. This is achieved by using particle image velocimetry measurements of a developing turbulent open-channel flow over a smooth wall. The tested flow effects are low values of the Reynolds number based on the momentum thickness Re …


Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill Jul 2022

Bbt Acoustic Alternative Top Bracing Cadd Data Set-Norev-2022jun28, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set consists of an overview presentation (PDF-formatted) file and companion video (MP4) and CADD files (DWG & DXF) for laser cutting the ETSU-developed alternate top bracing designs and marking templates for the STEM Guitar Project’s BBT (OM-sized) standard acoustic guitar kit. The three (3) alternative BBT top bracing designs in this release are
(a) a one-piece base for the standard kit's (Martin-style) bracing,
(b) 277 Ladder-style bracing, and
(c) an X-braced fan-style bracing similar to traditional European or so-called 'classical' acoustic guitars.

The CADD data set for each of the three (3) top bracing designs includes …


Bbt Side Mold Assy, Bill Hemphill Jun 2022

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds, speed, multi-pass …


An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park Mar 2022

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park

Electrical and Computer Engineering Faculty Research & Creative Works

The Industry Demand for Accurate and Fast Algorithms that Model Vital Battery Parameters, E.g., State-Of-Health, State-Of-Charge, Pulse-Power Capability, is Substantial. One of the Most Critical Models is Battery Capacity Fade. the Key Challenge with Physics-Based Battery Capacity Fade Modeling is the High Numerical Cost in Solving Complex Models. in This Study, an Efficient and Fast Model is Presented to Capture Capacity Fade in Lithium-Ion Batteries. Here, the High-Order Chebyshev Spectral Method is Employed to Address the Associated Complexity with Physics-Based Capacity Fade Models. its Many Advantages, Such as Low Computational Memory, High Accuracy, Exponential Convergence, and Ease of Implementation, Allow …


Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha Mar 2022

Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha

Faculty Publications

In this work, an attempt has been made to explore numerically the thermo-fluidic transport process in a novel M-shaped enclosure filled with permeable material along with Al2O3-Cu hybrid nanoparticles suspended in water under the influence of a horizontal magnetizing field. To exercise the influence of geometric parameters, a classical trapezoidal cavity is modified with an inverted triangle at the top to construct an M-shaped cavity. The cavity is heated isothermally from the bottom and cooled from the top, whereas the inclined sidewalls are insulated. The role of geometric parameters on the thermal performance is scrutinized thoroughly …


Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman Mar 2022

Kemar Hats Head Orientation Directivity, Samuel D. Bellows, Timothy W. Leishman

Directivity

This directivity data set for a KEMAR head head-and-torso simulator (HATS) includes head orientations in 14 directions in 5° steps starting from 0° to 40° and then in 10° steps from 40° to 90°. The full spherical measurements followed at an a = 0.97 m radius with the mouth aperture at the spherical center. The sampling density and distribution followed the AES 5° dual-equiangular sampling standard, omitting the south pole (θ = 180°). Thus, each spherical directivity assessment included 36 polar-angle θ samples and 72 azimuthal-angle ϕ samples. The presented data include 22 1/3-octave bands, ranging from 80 Hz …


Design Of Broadband Helmholtz Resonator Arrays Using The Radiation Impedance Method, Vidhya Rajendran, Andy Piacsek, Tomás Méndez Echenagucia Jan 2022

Design Of Broadband Helmholtz Resonator Arrays Using The Radiation Impedance Method, Vidhya Rajendran, Andy Piacsek, Tomás Méndez Echenagucia

All Faculty Scholarship for the College of the Sciences

This paper describes the design process of a low-frequency sound absorptive panel composed of differently tuned Helmholtz resonators (HRs), considering size and fabrication constraints relevant for applications in the building sector. The paper focuses on cylindrical and spiral resonators with embedded necks that are thin and can achieve high absorption. the mutual interaction between the resonators was modeled based on the radiation impedance method and it plays a key component in enhancing the absorption performance of the array. The differential evolution search algorithm was used to design the resonators and modify their mutual interaction to derive the absorption performance of …


Preparing A Gamma Ray Instrument For Space Flight, Peter A. Jenke, Michael Briggs Jan 2022

Preparing A Gamma Ray Instrument For Space Flight, Peter A. Jenke, Michael Briggs

Summer Community of Scholars (RCEU and HCR) Project Proposals

No abstract provided.


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Exploring Dft+U Parameter Space With A Bayesian Calibration Assisted By Markov Chain Monte Carlo Sampling, Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero Nov 2021

Exploring Dft+U Parameter Space With A Bayesian Calibration Assisted By Markov Chain Monte Carlo Sampling, Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero

Faculty & Staff Scholarship

The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo …


Lagrangian And Eulerian Accelerations In Turbulent Stratified Shear Flows, Frank G. Jacobitz, Kai Schneider Jul 2021

Lagrangian And Eulerian Accelerations In Turbulent Stratified Shear Flows, Frank G. Jacobitz, Kai Schneider

School of Engineering: Faculty Scholarship

The Lagrangian and Eulerian acceleration properties of fluid particles in homogeneous turbulence with uniform shear and uniform stable stratification are studied using direct numerical simulations. The Richardson number is varied from Ri=0, corresponding to unstratified shear flow, to Ri=1, corresponding to strongly stratified shear flow. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations have a stretched-exponential shape and they show a strong and similar influence on the Richardson number. The extreme values of the Eulerian acceleration are stronger than those observed for the Lagrangian acceleration. Geometrical statistics explain that the magnitude of the Eulerian acceleration is larger …


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Mar 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin Jan 2021

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu Jan 2021

Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for …


Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala Jan 2021

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala

Engineering Technology Faculty Publications

Designing proper fluid-wall interaction forces to achieve proper wetting conditions is an important area of interest in pseudopotential lattice Boltzmann models. In this paper, we propose a modified fluid-wall interaction force that applies for pseudopotential models of both single-component fluids and partially miscible multicomponent fluids, such as hydrocarbon mixtures. A reliable correlation that predicts the resulting liquid contact angle on a flat solid surface is also proposed. This correlation works well over a wide variety of pseudopotential lattice Boltzmann models and thermodynamic conditions.


Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom Jan 2021

Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom

Physics Faculty Publications

Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1-2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200-240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration …


One-Dimensional Lateral Force Anisotropy At The Atomic Scale In Sliding Single Molecules On A Surface, Yuan Zhang, Daniel J. Trainer, Badri Narayanan, Yang Li, Anh T. Ngo, Sushila Khadka, Arnab Neogi, Brandon Fisher, Larry A. Curtiss, Subramanian K.R.S. Sankaranarayanan, Saw Wai Hla Jan 2021

One-Dimensional Lateral Force Anisotropy At The Atomic Scale In Sliding Single Molecules On A Surface, Yuan Zhang, Daniel J. Trainer, Badri Narayanan, Yang Li, Anh T. Ngo, Sushila Khadka, Arnab Neogi, Brandon Fisher, Larry A. Curtiss, Subramanian K.R.S. Sankaranarayanan, Saw Wai Hla

Physics Faculty Publications

Using a q+ atomic force microscopy at low temperature, a sexiphenyl molecule is slid across an atomically flat Ag(111) surface along the direction parallel to its molecular axis and sideways to the axis. Despite identical contact area and underlying surface geometry, the lateral force required to move the molecule in the direction parallel to its molecular axis is found to be about half of that required to move it sideways. The origin of the lateral force anisotropy observed here is traced to the one-dimensional shape of the molecule, which is further confirmed by molecular dynamics simulations. We also demonstrate that …


Sound Vortex Diffraction Via Topological Charge In Phase Gradient Metagratings, Yangyang Fu, Chen Shen, Xiaohui Zhu, Junfei Li, Youwen Liu, Steven A. Crummer Oct 2020

Sound Vortex Diffraction Via Topological Charge In Phase Gradient Metagratings, Yangyang Fu, Chen Shen, Xiaohui Zhu, Junfei Li, Youwen Liu, Steven A. Crummer

Henry M. Rowan College of Engineering Faculty Scholarship

Wave fields with orbital angular momentum (OAM) have been widely investigated in metasurfaces. By engineering acoustic metasurfaces with phase gradient elements, phase twisting is commonly used to obtain acoustic OAM. However, it has limited ability to manipulate sound vortices, and a more powerful mechanism for sound vortex manipulation is strongly desired. Here, we propose the diffraction mechanism to manipulate sound vortices in a cylindrical waveguide with phase gradient metagratings (PGMs). A sound vortex diffraction law is theoretically revealed based on the generalized conservation principle of topological charge. This diffraction law can explain and predict the complicated diffraction phenomena of sound …


Elmer Fem-Dakota: A Unified Open-Source Computational Framework For Electromagnetics And Data Analytics, Anjali Sandip Aug 2020

Elmer Fem-Dakota: A Unified Open-Source Computational Framework For Electromagnetics And Data Analytics, Anjali Sandip

Mechanical Engineering Faculty Publications

Open-source electromagnetic design software, Elmer FEM, was interfaced with data analytics toolkit, Dakota. Furthermore, the coupled software was validated against a benchmark test. The interface developed provides a unified open-source computational framework for electromagnetics and data analytics. Its key features include uncertainty quantification, surrogate modelling and parameter studies. This framework enables a richer understanding of model predictions to better design electric machines in a time sensitive manner.


Feasibility Of Electric Field Assisted Clogging Reduction In Cold Gas Spraying Nozzle, Hendric Tronsson Jun 2020

Feasibility Of Electric Field Assisted Clogging Reduction In Cold Gas Spraying Nozzle, Hendric Tronsson

ENGS 88 Honors Thesis (AB Students)

The relatively novel cold spraying process expands its range of applications constantly. In order to continue this trend, this process still has various hurdles that need to be overcome such as clogging. Clogging within the cold gas spraying process causes porous coatings with less material properties and lower durability; a solution is needed in order to reduce the clogging and so expand the cold gas spraying applications. This study aimed to explore the feasibility of using an electric field to reduce clogging. To do so a simplified channel was used to simulate charged particle trajectory shifts under the influence of …


Automating 35mm Photographic Film Digitization: X-Y Table Capture System Design And Assessment, Michael J. Bennett May 2020

Automating 35mm Photographic Film Digitization: X-Y Table Capture System Design And Assessment, Michael J. Bennett

Published Works

35mm still image formats are some of the most abundant photographic film types in cultural heritage collections. However, their special handling needs coupled with high resolution digital capture requirements have traditionally posed logistical constraints with regard to the formats’ digitization at scale. Through the use of a programmable X-Y table camera capture system, both slide and strip 35mm photographic film can be digitized in an automated fashion following Federal Agencies Digitization Guidelines (FADGI).


Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello May 2020

Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello

Honors Scholar Theses

The production of soot is omnipresent in society today. Soot is the product of many of the combustion processes that provide the bulk of the usable energy throughout the world. Furthermore, soot particulate poses a great danger to both the environment and all forms of life on Earth. It has proven to pollute ecosystems, foster health problems for human beings, and degrade air quality [1].

These dangers make studying and understanding soot particulate paramount for improving the quality of life. Thus, this study introduces a new flame configuration for studying soot inception. Presently, various common flame configurations have been found …


Dispersion Tuning And Route Reconfiguration Of Acoustic Waves In Valley Topological Phononic Crystals, Zhenhua Tian, Chen Shen, Junfei Li, Eric Reit, Hunter Bachman, Joshua E. S. Socolar, Steven A. Crummer, Tony Jun Huang Feb 2020

Dispersion Tuning And Route Reconfiguration Of Acoustic Waves In Valley Topological Phononic Crystals, Zhenhua Tian, Chen Shen, Junfei Li, Eric Reit, Hunter Bachman, Joshua E. S. Socolar, Steven A. Crummer, Tony Jun Huang

Henry M. Rowan College of Engineering Faculty Scholarship

The valley degree of freedom in crystals offers great potential for manipulating classical waves, however, few studies have investigated valley states with complex wavenumbers, valley states in graded systems, or dispersion tuning for valley states. Here, we present tunable valley phononic crystals (PCs) composed of hybrid channel-cavity cells with three tunable parameters. Our PCs support valley states and Dirac cones with complex wavenumbers. They can be configured to form chirped valley PCs in which edge modes are slowed to zero group velocity states, where the energy at different frequencies accumulates at different designated locations. They enable multiple functionalities, including tuning …