Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali Jan 2023

Quantum Efficiency Enhancement In Simulated Nanostructured Negative Electron Affinity Gaas Photocathodes, Md Aziz Ar Rahman, Shukui Zhang, Hani E. Elsayed-Ali

Physics Faculty Publications

Nanostructured negative electron affinity GaAs photocathodes for a polarized electron source are studied using finite difference time domain optical simulation. The structures studied are nanosquare columns, truncated nanocones, and truncated nanopyramids. Mie-type resonances in the 700–800 nm waveband, suitable for generation of polarized electrons, are identified. At resonance wavelengths, the nanostructures can absorb up to 99% of the incident light. For nanosquare columns and truncated nanocones, the maximum quantum efficiency (QE) at 780 nm obtained from simulation is 27%, whereas for simulated nanopyramids, the QE is ∼21%. The high photocathode quantum efficiency is due to the shift of Mie resonance …


Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park May 2017

Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park

Physics Faculty Publications

The final steps in the manufacturing of a superconducting RF cavity involve careful tuning before the final welds to match the target frequency as fabrication tolerances may introduce some frequency deviations. The target frequency is chosen based on analysis of the shifts induced by remaining processing steps including acid etching and cool down. The baseline fabrication of a DQW crab cavity for the High Luminosity LHC (HL-LHC) envisages a first tuning before the cavity subassemblies are welded together. To produce a very accurate final result, subassemblies are trimmed to frequency in the last machining steps, using a clamped cavity assembly …


Long-Term Simulations Of Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, R. Majeti, C. Cotnoir, M. Stefani, D. Ranjan, A. Godunov, V. Morozov, H. Zhang, F. Lin, Y. Roblin, E. Nissen, T. Satogata Jan 2017

Long-Term Simulations Of Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, R. Majeti, C. Cotnoir, M. Stefani, D. Ranjan, A. Godunov, V. Morozov, H. Zhang, F. Lin, Y. Roblin, E. Nissen, T. Satogata

Physics Faculty Publications

Future machines such as the electron-ion colliders (JLEIC), linac-ring machines (eRHIC) or LHeC are particularly sensitive to beam-beam effects. This is the limiting factor for long-term stability and high luminosity reach. The complexity of the non-linear dynamics makes it challenging to perform such simulations which require millions of turns. Until recently, most of the methods used linear approximations and/or tracking for a limited number of turns. We have developed a framework which exploits a massively parallel Graphical Processing Units (GPU) architecture to allow for tracking millions of turns in a sympletic way up to an arbitrary order and colliding them …


Modeling Crabbing Dynamics In An Electron-Ion Collider, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen Jan 2015

Modeling Crabbing Dynamics In An Electron-Ion Collider, A. Castilla, V. S. Morozov, T. Satogata, J. R. Delayen

Physics Faculty Publications

A local crabbing scheme requires π/2 (mod π) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from π/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) …


Fabrication And Measurements Of 500 Mhz Superconducting Double Spoke Cavity, Hyekyoung Park, C. S. Hopper, J. R. Delayen Jan 2014

Fabrication And Measurements Of 500 Mhz Superconducting Double Spoke Cavity, Hyekyoung Park, C. S. Hopper, J. R. Delayen

Physics Faculty Publications

The 500 MHz double spoke cavity has been designed for a high velocity application such as a compact electron accelerator at Center for Accelerator Science at Old Dominion University and is being built at Jefferson Lab. The geometry specific to the double spoke cavity requires a variety of tooling and fixtures. Also a number of joints are expected to make it difficult to maintain the geometric deviation from the design minimal. This paper will report the fabrication technique, resulting tolerance from the design, and comparison between the measurements and simulations.


Hydrodynamic Relaxation Of An Electron Plasma To A Near-Maximum Entropy State, D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz Jun 2009

Hydrodynamic Relaxation Of An Electron Plasma To A Near-Maximum Entropy State, D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz

Dartmouth Scholarship

Dynamical relaxation of a pure electron plasma in a Malmberg-Penning trap is studied, comparing experiments, numerical simulations and statistical theories of weakly dissipative two-dimensional (2D) turbulence. Simulations confirm that the dynamics are approximated well by a 2D hydrodynamic model. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state with constrained energy, circulation, and angular momentum. This provides evidence that 2D electron fluid relaxation in a turbulent regime is governed by principles of maximum entropy.