Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Plasma and Beam Physics

Niobium

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physics

Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen Jan 2022

Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen

Physics Faculty Publications

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without …


Design Of Dressed Crab Cavities For The Hl-Lhc Upgrade, C. Zanoni, K. Artoos, S. Atieh, I. Aviles-Santillana, S. Belomestnykh, I. Ben-Zvi, J.P. Brachet, G. Burt, R. Calaga, O. Captina, S. U. De Silva, J. R. Delayen, A. May, K. Marinov, R. Olave, H. Park, N. Templeton Jan 2015

Design Of Dressed Crab Cavities For The Hl-Lhc Upgrade, C. Zanoni, K. Artoos, S. Atieh, I. Aviles-Santillana, S. Belomestnykh, I. Ben-Zvi, J.P. Brachet, G. Burt, R. Calaga, O. Captina, S. U. De Silva, J. R. Delayen, A. May, K. Marinov, R. Olave, H. Park, N. Templeton

Physics Faculty Publications

The HL-LHC upgrade relies on a set of RF crab cavities for reaching its goals. Two parallel concepts, the Double Quarter Wave (DQW) and the RF Dipole (RFD), are going through a comprehensive design process along with preparation of fabrication in view of extensive tests with beam in SPS. High Order Modes (HOM) couplers are critical in providing damping in RF cavities for operation in accelerators. HOM prototyping and fabrication have recently started at CERN. In this paper, an overview of the final geometry is provided along with an insight in the mechanical and thermal analyses performed to validate the …


Secondary Electron Yield Of Electron Beam Welded Areas Of Srf Cavities, M. Basovic, S. Popovic, M. Tomovic, L. Vuskovic, A. Samolov, F. Cuckov Jan 2015

Secondary Electron Yield Of Electron Beam Welded Areas Of Srf Cavities, M. Basovic, S. Popovic, M. Tomovic, L. Vuskovic, A. Samolov, F. Cuckov

Physics Faculty Publications

Secondary Electron Emission (SEE) is a phenomenon that contributes to the total electron activity inside the Superconducting Radiofrequency (SRF) cavities during the accelerator operation. SEE is highly dependent on the state of the surface. During electron beam welding process, significant amount of heat is introduced into the material causing the microstructure change of Niobium (Nb). Currently, all simulation codes for field emission and multipacting are treating the inside of the cavity as a uniform, homogeneous surface. Due to its complex shape and fabricating procedure, and the sensitivity of the SEE on the surface state, it would be interesting to see …


Experiment And Results On Plasma Etching Of Srf Cavities, J. Upadhyay, Do Im, J. Peshl, S. Popovic, L. Vuskovic, A. -M. Valente-Feliciano, L. Phillips Jan 2015

Experiment And Results On Plasma Etching Of Srf Cavities, J. Upadhyay, Do Im, J. Peshl, S. Popovic, L. Vuskovic, A. -M. Valente-Feliciano, L. Phillips

Physics Faculty Publications

The inner surfaces of SRF cavities are currently chemically treated (etched or electro polished) to achieve the state of the art RF performance. We designed an apparatus and developed a method for plasma etching of the inner surface for SRF cavities. The process parameters (pressure, power, gas concentration, diameter and shape of the inner electrode, temperature and positive dc bias at inner electrode) are optimized for cylindrical geometry. The etch rate non-uniformity has been overcome by simultaneous translation of the gas point-of-entry and the inner electrode during the processing. A single cell SRF cavity has been centrifugally barrel polished, chemically …