Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur Jan 2023

Piv Measurements Of Open-Channel Turbulent Flow Under Unconstrained Conditions, James K. Arthur

Faculty Journal Articles

Many open-channel turbulent flow studies have been focused on highly constrained conditions. Thus, it is rather conventional to note such flows as being fully developed, fully turbulent, and unaffected by sidewalls and free surface disturbances. However, many real-life flow phenomena in natural water bodies and artificially installed drain channels are not as ideal. This work is aimed at studying some of these unconstrained conditions. This is achieved by using particle image velocimetry measurements of a developing turbulent open-channel flow over a smooth wall. The tested flow effects are low values of the Reynolds number based on the momentum thickness Re …


Temporal And Spatial Scaling Of Dissipation Under Non-Breaking Surface Waves, Mingming Shao, Brian K. Haus, Darek Bogucki, Mohammad Barzegar Jan 2019

Temporal And Spatial Scaling Of Dissipation Under Non-Breaking Surface Waves, Mingming Shao, Brian K. Haus, Darek Bogucki, Mohammad Barzegar

Supplementary Data and Tools

This dataset is associated to the NSF OCE/Physical Oceanography funded project “Laboratory Investigation of Turbulence Generation by Surface Waves”. There are three papers in preparation that will refer to data contained within this archive. The overarching goal of this project was to address a significant knowledge gap regarding the turbulent dissipation of non-breaking surface waves. To accomplish this, a comprehensive study in the SUrge-STructure-Atmosphere-INteraction (SUSTAIN) wind-wave laboratory at the University of Miami was conducted. A combination of established measurement approaches (Particle Image Velocimetry (PIV) and Vertical Microstructure Profiler (VMP)) and new technologies (Optical Turbulence Sensor (OTS)) have been used carry …


An Experimental Investigation Of Wing-Tip Vortex Decay In Turbulence, Hai G. Ghimire, Sean C. C. Bailey Mar 2017

An Experimental Investigation Of Wing-Tip Vortex Decay In Turbulence, Hai G. Ghimire, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

Particle image velocimetry measurements were conducted for a wing-tip vortex decaying in free-stream turbulence. The vortex exhibited stochastic collapse with free-stream turbulence present, with the breakdown initiating earlier for higher levels of turbulence. An increased rate of decay of the vortex tangential velocity was also observed, increasing with increasing free-stream turbulence. The decay of the vortex tangential velocity without the free-stream turbulence was well represented by viscous diffusion, resulting in an increase in the core radius and decrease in the peak tangential velocity. With the addition of free-stream turbulence, the rate of decay of the peak tangential velocity of the …


Asymptotic Multi-Layer Analysis Of Wind Over Unsteady Monochromatic Surface Waves, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion Dec 2013

Asymptotic Multi-Layer Analysis Of Wind Over Unsteady Monochromatic Surface Waves, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion

Publications

Asymptotic multi-layer analyses and computation of solutions for turbulent flows over steady and unsteady monochromatic surface wave are reviewed, in the limits of low turbulent stresses and small wave amplitude. The structure of the flow is defined in terms of asymptotically-matched thin-layers, namely the surface layer and a critical layer, whether it is ‘elevated’ or ‘immersed’, corresponding to its location above or within the surface layer. The results particularly demonstrate the physical importance of the singular flow features and physical implications of the elevated critical layer in the limit of the unsteadiness tending to zero. These agree with the variational …


Unitary Qubit Lattice Gas Representation Of 2d And 3d Quantum Turbulence, George Vahala, Bo Zhang, Jeffrey Yepez, Linda L. Vahala, Min Soe Jan 2012

Unitary Qubit Lattice Gas Representation Of 2d And 3d Quantum Turbulence, George Vahala, Bo Zhang, Jeffrey Yepez, Linda L. Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

No abstract provided.


Turbulence And Wave Dynamics Across Gas–Liquid Interfaces, Shahrdad Sajjadi, Julian Hunt, Stephen Belcher, Derek Stretch, John Clegg Jul 2011

Turbulence And Wave Dynamics Across Gas–Liquid Interfaces, Shahrdad Sajjadi, Julian Hunt, Stephen Belcher, Derek Stretch, John Clegg

Publications

Mechanisms are reviewed here for the distortion of turbulent flows near thin density interfaces and their effects on transfer processes across them. Firstly the results of rapid distortion calculations show how the in homogeneous eddy structure depends on whether the turbulence is generated above or below the interface, or in both regions. The flow is unstratified and the buoyancy forces are stable and strong enough relative to the inertial forces that the interface is continuous. It is shown that as the surface blocks the vertical turbulent eddy motions, horizontal straining motions are induced which affect the surface viscous layers and …


Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello Jan 2009

Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello

Masters Theses 1911 - February 2014

Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in …


Quantifying Vertical Mixing In Estuaries, W. Rockwell Geyer, Malcolm E. Scully, David K. Ralston Jan 2008

Quantifying Vertical Mixing In Estuaries, W. Rockwell Geyer, Malcolm E. Scully, David K. Ralston

CCPO Publications

Estuarine turbulence is notable in that both the dissipation rate and the buoyancy frequency extend to much higher values than in other natural environments. The high dissipation rates lead to a distinct inertial subrange in the velocity and scalar spectra, which can be exploited for quantifying the turbulence quantities. However, high buoyancy frequencies lead to small Ozmidov scales, which require high sampling rates and small spatial aperture to resolve the turbulent fluxes. A set of observations in a highly stratified estuary demonstrate the effectiveness of a vessel-mounted turbulence array for resolving turbulent processes, and for relating the turbulence to the …


Thermal Lattice Boltzmann Simulation For Multispecies Fluid Equilibration, Linda L. Vahala, Darren Wah, George Vahala, Jonathan Carter, Pavol Pavlo Jul 2000

Thermal Lattice Boltzmann Simulation For Multispecies Fluid Equilibration, Linda L. Vahala, Darren Wah, George Vahala, Jonathan Carter, Pavol Pavlo

Electrical & Computer Engineering Faculty Publications

The equilibration rate for multispecies fluids is examined using thermal lattice Boltzmann simulations. Two-dimensional free-decay simulations are performed for effects of velocity shear layer turbulence on sharp temperature profiles. In particular, parameters are so chosen that the lighter species is turbulent while the heavier species is laminar-and so its vorticity layers would simply decay and diffuse in time. With species coupling, however, there is velocity equilibration followed by the final relaxation to one large co- and one large counter-rotating vortex. The temperature equilibration proceeds on a slower time scale and is in good agreement with the theoretical order of magnitude …