Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Elementary Particles and Fields and String Theory

2022

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 57

Full-Text Articles in Physics

Fourier Acceleration In The Linear Sigma Model, Cameron Cianci Dec 2022

Fourier Acceleration In The Linear Sigma Model, Cameron Cianci

Honors Scholar Theses

The linear sigma model is a low energy effective model of Quantum Chromodynamics. This model mimics the breaking of chiral symmetry both spontaneously and explicitly through the quark condensate and pion mass matrix respectively. Fourier acceleration is a method that can be implemented in the Hybrid Monte-Carlo algorithm which decreases autocorrelations due to critical slowing down through tuning the mass parameters in the HMC algorithm. Fourier acceleration is applied to the linear sigma model with a novel mass estimation procedure, by assuming the modes behave approximately like simple harmonic oscillators. The masses are chosen by sampling the expectation values of …


A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill Sep 2022

A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill

Articles

In this paper, we describe an extremely efficient method for computing the renormalized stress-energy tensor of a quantum scalar field in spherically symmetric black hole spacetimes. The method applies to a scalar field with arbitrary field parameters. We demonstrate the utility of the method by computing the renormalized stress-energy tensor for a scalar field in the Schwarzschild black hole spacetime, applying our results to discuss the null energy condition and the semiclassical backreaction.


Search For A W' Boson Decaying To A Vector-Like Quark And A Top Or Bottom Quark In The All-Jets Final State At √S = 13 Tev, The Cms Collaboration Sep 2022

Search For A W' Boson Decaying To A Vector-Like Quark And A Top Or Bottom Quark In The All-Jets Final State At √S = 13 Tev, The Cms Collaboration

Department of Physics and Astronomy: Faculty Publications

A search is presented for a heavy W0 boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using protonproton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb−1 at a center-of-mass energy of 13TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are …


Qcd Corrections In Tqγ Production At Hadron Colliders, Nikolaos Kidonakis, Nodoka Yamanaka Aug 2022

Qcd Corrections In Tqγ Production At Hadron Colliders, Nikolaos Kidonakis, Nodoka Yamanaka

Faculty and Research Publications

We study QCD corrections for the associated production of a single top quark and a photon (tqγ production) at hadron colliders. We calculate the NLO cross section at LHC and future collider energies for a variety of kinematical cuts, and we estimate uncertainties from scale dependence and from parton distributions. We also calculate differential distributions in top-quark transverse-momentum and rapidity as well as photon energy. Finally, we study higher-order corrections from soft-gluon emission for this process, and we provide approximate NNLO (aNNLO) results for the cross section and top-quark differential distributions. We also compare our calculations with recent measurements from …


Fermion-Induced Electroweak Symmetry Non-Restoration Via Temperature-Dependent Masses, Yu Hang Ng Aug 2022

Fermion-Induced Electroweak Symmetry Non-Restoration Via Temperature-Dependent Masses, Yu Hang Ng

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Standard Model (SM) and many extensions of SM predict that the electroweak (EW) symmetry was restored in the early universe when the temperature was around 160 GeV. However, recent studies showed that the interactions between some new scalars and SU(2)_L Higgs doublet(s) can cause the EW symmetry to remain broken at temperatures well above the EW scale in certain renormalizable extensions of SM. In this study, we found that new fermions from renormalizable models can also induce this EW symmetry non-restoration effect, provided that they have the appropriate temperature-dependent masses. These masses can arise naturally from the interactions between the …


What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre Jun 2022

What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre

All Physics Faculty Publications

This is a brief, informal, and relatively low-level course on the foundations of quantum field theory. The prerequisites are undergraduate courses in quantum mechanics and electromagnetism.


Using Z Boson Events To Study Parton-Medium Interactions In Pb-Pb Collisions, The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan Mar 2022

Using Z Boson Events To Study Parton-Medium Interactions In Pb-Pb Collisions, The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan

Physics and Engineering Faculty Publications

The spectra measurements of charged hadrons produced in the shower of a parton originating in the same hard scattering with a leptonically decaying Z boson are reported in lead-lead nuclei (Pb-Pb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Both Pb-Pb and pp data sets are recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 1.7 nb-1 and 320 pb-1, respectively. Hadronic collision data with one reconstructed Z boson candidate with the transverse momentum pT>30 GeV/c are analyzed. The Z boson constrains the initial energy and direction of the …


Search For Wγ Resonances In Proton-Proton Collisions At S=13 Tev Using Hadronic Decays Of Lorentz-Boosted W Bosons, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan Mar 2022

Search For Wγ Resonances In Proton-Proton Collisions At S=13 Tev Using Hadronic Decays Of Lorentz-Boosted W Bosons, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan

Physics and Engineering Faculty Publications

A search for Wγ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at s=13 TeV, corresponding to an integrated luminosity of 137 fb−1, collected with the CMS detector at the LHC in 2016–2018. The Wγ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background …


Erratum: Search For Heavy Higgs Bosons Decaying To A Top Quark Pair In Proton-Proton Collisions At S = 13 Tev (Journal Of High Energy Physics, (2020), 2020, 4, (171), 10.1007/Jhep04(2020)171), The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan Mar 2022

Erratum: Search For Heavy Higgs Bosons Decaying To A Top Quark Pair In Proton-Proton Collisions At S = 13 Tev (Journal Of High Energy Physics, (2020), 2020, 4, (171), 10.1007/Jhep04(2020)171), The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan

Physics and Engineering Faculty Publications

In figure 7 of the original publication, the label of the y axis should have been (Formula presented.)”. The corrected version is shown in figure 1. Accordingly, the text pointing to the figure should read “figure 7 shows scans of (Formula presented.) for this hypothesis, as a function of the coupling modifier gAtt-”.


Measurement Of W±Γ Differential Cross Sections In Proton-Proton Collisions At S =13 Tev And Effective Field Theory Constraints, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan Mar 2022

Measurement Of W±Γ Differential Cross Sections In Proton-Proton Collisions At S =13 Tev And Effective Field Theory Constraints, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan

Physics and Engineering Faculty Publications

Differential cross section measurements of W±γ production in proton-proton collisions at s=13 TeV are presented. The data set used in this study was collected with the CMS detector at the CERN LHC in 2016-2018 with an integrated luminosity of 138 fb-1. Candidate events containing an electron or muon, a photon, and missing transverse momentum are selected. The measurements are compared with standard model predictions computed at next-to-leading and next-to-next-to-leading orders in perturbative quantum chromodynamics. Constraints on the presence of TeV-scale new physics affecting the WWγ vertex are determined within an effective field theory framework, focusing on the O3W operator. A …


Study Of Dijet Events With Large Rapidity Separation In Proton-Proton Collisions At √S = 2.76 Tev, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan Mar 2022

Study Of Dijet Events With Large Rapidity Separation In Proton-Proton Collisions At √S = 2.76 Tev, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan

Physics and Engineering Faculty Publications

The cross sections for inclusive and Mueller-Navelet dijet production are measured as a function of the rapidity separation between the jets in proton-proton collisions at s = 2.76 TeV for jets with transverse momentum pT> 35 GeV and rapidity |y| < 4.7. Various dijet production cross section ratios are also measured. A veto on additional jets with pT> 20 GeV is introduced to improve the sensitivity to the effects of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution. The measurement is compared with the predictions of various Monte Carlo models based on leading-order and next-to-leading-order calculations including the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi leading-logarithm (LL) parton shower as well as the LL BFKL resummation. [Figure not available: see fulltext.]


Isolated Objects And Their Evolution: A Derivation Of The Propagator’S Path Integral For Spinless Elementary Particles, Domenico Napoletani, Daniele Carlo Struppa Jan 2022

Isolated Objects And Their Evolution: A Derivation Of The Propagator’S Path Integral For Spinless Elementary Particles, Domenico Napoletani, Daniele Carlo Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

We formalize the notion of isolated objects (units), and we build a consistent theory to describe their evolution and interaction. We further introduce a notion of indistinguishability of distinct spacetime paths of a unit, for which the evolution of the state variables of the unit is the same, and a generalization of the equivalence principle based on indistinguishability. Under a time reversal condition on the whole set of indistinguishable paths of a unit, we show that the quantization of motion of spinless elementary particles in a general potential field can be derived in this framework, in the limiting …


A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre Jan 2022

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre

Research Vignettes

No abstract provided.


Measuring Recoiling Nucleons From The Nucleus With The Future Electron Ion Collider, Florian Hauenstein, A. Jentsch, J. R. Pybus, A. Kiral, M. D. Baker, Y. Furletova, O. Hen, D. W. Higinbotham, Charles Hyde, V. Morozov, D. Romanov, Lawrence B. Weinstein Jan 2022

Measuring Recoiling Nucleons From The Nucleus With The Future Electron Ion Collider, Florian Hauenstein, A. Jentsch, J. R. Pybus, A. Kiral, M. D. Baker, Y. Furletova, O. Hen, D. W. Higinbotham, Charles Hyde, V. Morozov, D. Romanov, Lawrence B. Weinstein

Physics Faculty Publications

Short range correlated nucleon-nucleon (NN) pairs are an important part of the nuclear ground state. They are typically studied by scattering an electron from one nucleon in the pair and detecting its spectator correlated partner (“spectator-nucleon tagging”). The Electron Ion Collider (EIC) should be able to detect these nucleons, since they are boosted to high momentum in the laboratory frame by the momentum of the ion beam. To determine the feasibility of these studies with the planned EIC detector configuration, we have simulated quasielastic scattering for two electron and ion beam energy configurations: 5 GeV e− and 41 …


Measurement Of Spin Density Matrix Elements In Λ(1520) Photoproduction At 8.2-8.8 Gev, Shankar Adhikari, C. S. Akondi, M. Albrecht, Moskov Amaryan, Tyler Viducic, B. Zihlmann, Et Al., Gluex Collaboration, D. I. Glazier, V. Mathieu Jan 2022

Measurement Of Spin Density Matrix Elements In Λ(1520) Photoproduction At 8.2-8.8 Gev, Shankar Adhikari, C. S. Akondi, M. Albrecht, Moskov Amaryan, Tyler Viducic, B. Zihlmann, Et Al., Gluex Collaboration, D. I. Glazier, V. Mathieu

Physics Faculty Publications

We report on the measurement of spin density matrix elements of the Λ(1520) in the photoproduction reaction γp→Λ(1520)K+, via its subsequent decay to Kp. The measurement was performed as part of the GlueX experimental program in Hall D at Jefferson Laboratory using a linearly polarized photon beam with Eγ = 8.2 GeV–8.8 GeV. These are the first such measurements in this photon energy range. Results are presented in bins of momentum transfer squared, − (t − t0). We compare the results with a Reggeon exchange model and determine that natural exchange amplitudes are …


Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich Jan 2022

Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich

Physics Faculty Publications

We investigated the nonlinear Meissner effect (NLME) in Nb3Sn thin-film coplanar resonators by measuring the resonance frequency as a function of a parallel magnetic field at different temperatures. We used low rf power probing in films thinner than the London penetration depth λ(B) to significantly increase the field onset of vortex penetration and measure the NLME under equilibrium conditions. Contrary to the conventional quadratic increase of λ(B) with B expected in s-wave superconductors, we observed a nearly linear increase of the penetration depth with B. We concluded that this behavior of λ(B) is due to weak linked grain …


Connecting Matrix Elements To Multi-Hadron Form-Factors, Andrew W. Jackura Jan 2022

Connecting Matrix Elements To Multi-Hadron Form-Factors, Andrew W. Jackura

Physics Faculty Publications

We discuss developments in calculating multi-hadron form-factors and transition processes via lattice QCD. Our primary tools are finite-volume scaling relations, which map spectra and matrix elements to the corresponding multi-hadron infinite-volume amplitudes. We focus on two hadron processes probed by an external current, and provide various checks on the finite-volume formalism in the limiting cases of perturbative interactions and systems forming a bound state. By studying model-independent properties of the infinite-volume amplitudes, we are able to rigorously define form-factors of resonances.


Determination Of The Argon Spectral Function From (E, E'P) Data, Jefferson Lab Hall A Collaboration, L. Jiang, A.M. Ankowski, D. Abrams, Florian Hauenstein, Charles Hyde, S. Wood, Z. Ye, J. Zhang, Et Al. Jan 2022

Determination Of The Argon Spectral Function From (E, E'P) Data, Jefferson Lab Hall A Collaboration, L. Jiang, A.M. Ankowski, D. Abrams, Florian Hauenstein, Charles Hyde, S. Wood, Z. Ye, J. Zhang, Et Al.

Physics Faculty Publications

The E12-14-012 experiment, performed in Jefferson Lab Hall A, has measured the (e,e′p) cross section in parallel kinematics using a natural argon target. Here, we report the full results of the analysis of the data set corresponding to beam energy 2.222 GeV, and spanning the missing momentum and missing energy range 15 ≲ pm ≲ 300  MeV /c and 12 ≲ Em ≲ 80  MeV. The reduced cross section, determined as a function of pm and Em with ≈ 4% accuracy, has been fitted using the results of Monte Carlo simulations involving a model spectral function and …


The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre Jan 2022

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre

Downloads

This is the entire DifferentialGeometry package, a zip file (DifferentialGeometry.zip) containing (1) a Maple Library file, DifferentialGeometryUSU.mla, (2) a Maple help file DifferentialGeometry.help, (3) a Maple Library file, DGApplicatons.mla. This is the latest version of the DifferentialGeometry software; it supersedes what is released with Maple.

Installation instructions


Reply To "Comment On 'Quasielastic Lepton Scattering And B=Back-To-Back Nucleons In The Short-Time Approximation' ", S. Pastore, J. Carlson, Rocco Schiavilla, J. L. Barrow, S. Gandolfi, R. B. Wiringa Jan 2022

Reply To "Comment On 'Quasielastic Lepton Scattering And B=Back-To-Back Nucleons In The Short-Time Approximation' ", S. Pastore, J. Carlson, Rocco Schiavilla, J. L. Barrow, S. Gandolfi, R. B. Wiringa

Physics Faculty Publications

We briefly review the concept of scaling and how it occurs in quasielastic electron and neutrino scattering from nuclei, and then the particular approach to scaling in the short-time approximation. We show that, whereas two-nucleon currents do significantly enhance the transverse electromagnetic response, they do not spoil scaling, but, in fact, enhance it. We provide scaling results obtained in the short-time approximation that verify this claim. The enhanced scaling, although obtained empirically, is not “accidental”—as claimed in [O. Benhar, Phys. Rev. C 105, 049801 (2022)]—but rather reflects quasielastic kinematics and the dominant role played by pion-exchange interactions and currents …


Accessing Scattering Amplitudes Using Quantum Computers, Raúl A. Briceño, Marco A. Carrillo, Juan V. Guerrero, Maxwell T. Hansen, Alexandru M. Sturzu Jan 2022

Accessing Scattering Amplitudes Using Quantum Computers, Raúl A. Briceño, Marco A. Carrillo, Juan V. Guerrero, Maxwell T. Hansen, Alexandru M. Sturzu

Physics Faculty Publications

Future quantum computers may serve as a tool to access non-perturbative real-time correlation functions. In this talk, we discuss the prospects of using these to study Compton scattering for arbitrary kinematics. The restriction to a finite-volume spacetime, unavoidable in foreseeable quantum-computer simulations, must be taken into account in the formalism for extracting scattering observables. One approach is to work with a non-zero iϵ-prescription in the Fourier transform to definite momentum and then to estimate an ordered double limit, in which the spacetime volume is sent to infinity before ϵ is sent to 0. For the amplitudes and parameters considered here, …


Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao Jan 2022

Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao

Physics Faculty Publications

We perform a study on the structure of the inverse moment (IM) of quasidistributions, by taking B-meson quasidistribution amplitude (quasi-DA) as an example. Based on a one-loop calculation, we derive the renormalization group equation and velocity evolution equation for the first IM of quasi-DA. We find that, in the large velocity limit, the first IM of B-meson quasi-DA can be factorized into IM as well as logarithmic moments of light-cone distribution amplitude (LCDA), accompanied by short distance coefficients. Our results can be useful either in understanding the patterns of perturbative matching in large momentum effective theory or evaluating inverse …


Combining Nonperturbative Transverse Momentum Dependence With Tmd Evolution, J.O. Gonzalez-Hernandez, T. C. Rogers, N. Sato Jan 2022

Combining Nonperturbative Transverse Momentum Dependence With Tmd Evolution, J.O. Gonzalez-Hernandez, T. C. Rogers, N. Sato

Physics Faculty Publications

Central to understanding the nonperturbative, intrinsic partonic nature of hadron structure are the concepts of transverse momentum dependent (TMD) parton distribution and fragmentation functions. A TMD factorization approach to the phenomenology of semi-inclusive processes that includes evolution, higher orders, and matching to larger transverse momentum is ultimately necessary for reliably connecting with phenomenologically extracted nonperturbative structures, especially when widely different scales are involved. In this paper, we will address some of the difficulties that arise when phenomenological techniques that were originally designed for very high energy applications are extended to studies of hadron structures, and we will solidify the connection …


Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou Jan 2022

Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou

Physics Faculty Publications

Explorations of the violation of null energy condition (NEC) in cosmology could enrich our understanding of the very early universe and the related gravity theories. Although a fully stable NEC violation can be realized in the “beyond Horndeski” theory, it remains an open question whether a violation of the NEC is allowed by some fundamental properties of UV-complete theories or the consistency requirements of effective field theory (EFT). We investigate the tree-level perturbative unitarity for stable NEC violations in the contexts of both Galileon and “beyond Horndeski” genesis cosmology, in which the universe is asymptotically Minkowskian in the past. We …


Toward The Determination Of The Gluon Helicity Distribution In The Nucleon From Lattice Quantum Chromodynamics, Colin Egerer, Bálint Joó, Joseph Karpie, Nikhil Karthik, Tanjib Khan, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos Jan 2022

Toward The Determination Of The Gluon Helicity Distribution In The Nucleon From Lattice Quantum Chromodynamics, Colin Egerer, Bálint Joó, Joseph Karpie, Nikhil Karthik, Tanjib Khan, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos

Physics Faculty Publications

We present the first exploratory lattice quantum chromodynamics (QCD) calculation of the polarized gluon Ioffe-time pseudodistribution in the nucleon. The Ioffe-time pseudodistribution provides a frame-independent and gauge-invariant framework to determine the gluon helicity in the nucleon from first principles. We employ a high-statistics computation using a 323 × 64 lattice ensemble characterized by a 358 MeV pion mass and a 0.094 fm lattice spacing. We establish the pseudodistribution approach as a feasible method to address the proton spin puzzle with successive improvements in statistical and systematic uncertainties anticipated in the future. Within the statistical precision of our data, we …


Collinear Factorization At Subasymptotic Kinematics And Validation In A Diquark Spectator Model, Juan V. Guerrero, Alberto Accardi Jan 2022

Collinear Factorization At Subasymptotic Kinematics And Validation In A Diquark Spectator Model, Juan V. Guerrero, Alberto Accardi

Physics Faculty Publications

We revisit the derivation of collinear factorization for Deep Inelastic Scattering at subasymptotic values of the four-momentum transfer squared, where the masses of the particles participating in the interaction cannot be neglected. By using an inclusive jet function to describe the scattered quark final state, we can restrict the needed parton kinematic approximations just to the four-momentum conservation of the hard scattering process, and explicitly expand the rest of the diagram in powers of the unobserved parton transverse momenta rather than neglecting those. This procedure provides one with more flexibility in fixing the virtuality of the scattered and recoiling partons …


𝒯, 𝒫-Odd Effects In The Luoh⁺ Cation, Daniel E. Maison, Leonid V. Skripnikov, Gleb Penyazkov, Matt Grau, Alexander N. Petrov Jan 2022

𝒯, 𝒫-Odd Effects In The Luoh⁺ Cation, Daniel E. Maison, Leonid V. Skripnikov, Gleb Penyazkov, Matt Grau, Alexander N. Petrov

Physics Faculty Publications

The LuOH+ cation is a promising system to search for manifestations of time reversal and spatial parity violation effects. Such effects in LuOH+ induced by the electron electric dipole moment eEDM and the scalar-pseudoscalar interaction of the nucleus with electrons, characterized by ks constant, in LuOH+ are studied. The enhancement factors, polarization in the external electric field, hyperfine interaction, and rovibrational structure are calculated. The study is required for the experiment preparation and extraction of the eEDM and ks values from experimental data.


Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco Jan 2022

Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco

Computer Science Faculty Publications

We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event …


Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat Jan 2022

Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat

Publications and Research

We previously proposed that entanglement across a planar surface can be obtained from the partition function on a Euclidean hourglass geometry. Here we extend the prescription to spherical entangling surfaces in conformal field theory. We use the prescription to evaluate log terms in the entropy of a conformal field theory in two dimensions, a conformally coupled scalar in four dimensions, and a Maxwell field in four dimensions. For Maxwell we reproduce the extractable entropy obtained by Soni and Trivedi. We take this as evidence that the hourglass prescription provides a Euclidean technique for evaluating extractable entropy in quantum field theory.


Superluminal Propagation On A Moving Braneworld, Brian Greene, Daniel Kabat, Janna Levin, Arjun S. Menon Jan 2022

Superluminal Propagation On A Moving Braneworld, Brian Greene, Daniel Kabat, Janna Levin, Arjun S. Menon

Publications and Research

We consider a braneworld scenario in the simplest setting, M4 × S1, with a four-dimensional (4D) Minkowski metric induced on the brane, and establish the possibility of superluminal propagation. If the brane is at rest, the 4D Lorentz symmetry of the brane is exact, but if the brane is in motion, it is broken globally by the compactification. By measuring bulk fields, an observer on the brane sees a slice through a higher-dimensional field profile, which carries an imprint of the extra dimensions even when the brane is at rest. If the brane is in motion, we …