Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Elementary Particles and Fields and String Theory

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 527

Full-Text Articles in Physics

Precision Measurement Of The Beam-Normal Single-Spin Asymmetry In Forward-Angle Elastic Electron-Proton Scattering, Qweak Collaboration, David Armstrong, Wouter Deconinck, K. Bartlett, J. C. Cornejo, R. D. Carlini, James F. Dowd, J. M. Finn, Valerie M. Gray, K. Grimm, J. R. Hoskins, J. P. Leckey, Jeong Han Lee, Joshua A. Magee, Victoria F. Owen Sep 2020

Precision Measurement Of The Beam-Normal Single-Spin Asymmetry In Forward-Angle Elastic Electron-Proton Scattering, Qweak Collaboration, David Armstrong, Wouter Deconinck, K. Bartlett, J. C. Cornejo, R. D. Carlini, James F. Dowd, J. M. Finn, Valerie M. Gray, K. Grimm, J. R. Hoskins, J. P. Leckey, Jeong Han Lee, Joshua A. Magee, Victoria F. Owen

Arts & Sciences Articles

A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of theta_lab = 7.9 degrees and a mean energy of 1.149 GeV. The asymmetry result is B_n = -5.194 +- 0.067 (stat) +- 0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering ...


Physics 516: Electromagnetic Phenomena (Spring 2020), Philip C. Nelson May 2020

Physics 516: Electromagnetic Phenomena (Spring 2020), Philip C. Nelson

Department of Physics Papers

These course notes are made publicly available in the hope that they will be useful. All reports of errata will be gratefully received. I will also be glad to hear from anyone who reads them, whether or not you find errors: pcn@upenn.edu.


Consistency Checks For Two-Body Finite-Volume Matrix Elements. Ii. Perturbative Systems, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura May 2020

Consistency Checks For Two-Body Finite-Volume Matrix Elements. Ii. Perturbative Systems, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura

Physics Faculty Publications

Using the general formalism presented in [Phys. Rev. D 94, 013008 (2016); Phys. Rev. D 100, 034511 (2019)], we study the finite-volume effects for the 2 þ J → 2 matrix element of an external current coupled to a two-particle state of identical scalars with perturbative interactions. Working in a finite cubic volume with periodicity L, we derive a 1=L expansion of the matrix element through O(1=L5) and find that it is governed by two universal current-dependent parameters, the scalar charge and the threshold two particle form factor. We confirm the result through a numerical study of ...


Magnetic Forces In The Absence Of A Classical Magnetic Field, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell Apr 2020

Magnetic Forces In The Absence Of A Classical Magnetic Field, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell

Mathematics, Physics, and Computer Science Faculty Articles and Research

It is shown that, in some cases, the effect of discrete distributions of flux lines in quantum mechanics can be associated with the effect of continuous distributions of magnetic fields with special symmetries. In particular, flux lines with an arbitrary value of magnetic flux can be used to create energetic barriers, which can be used to confine quantum systems in specially designed configurations. This generalizes a previous work where such energy barriers arose from flux lines with half-integer fluxons. Furthermore, it is shown how the Landau levels can be obtained from a two-dimensional grid of flux lines. These results suggest ...


The Clas12 Software Framework And Event Reconstruction, V. Ziegler, N. A. Baltzell, F. Bossù, D. S. Carman, P. Chatanon, M. Contalbrigo, J. Newton, M. Ungaro Apr 2020

The Clas12 Software Framework And Event Reconstruction, V. Ziegler, N. A. Baltzell, F. Bossù, D. S. Carman, P. Chatanon, M. Contalbrigo, J. Newton, M. Ungaro

Physics Faculty Publications

We describe offline event reconstruction for the CEBAF Large Acceptance Spectrometer at 12 GeV (CLAS12), including an overview of the offline reconstruction framework and software tools, a description of the algorithms developed for the individual detector subsystems, and the overall approach for charged and neutral particle identification. We also present the scheme for data processing and the code management procedures.


Heavy Quark Expansion For Heavy-Light Light-Cone Operators, Shuai Zhao Apr 2020

Heavy Quark Expansion For Heavy-Light Light-Cone Operators, Shuai Zhao

Physics Faculty Publications

We generalize the celebrated heavy quark expansion to nonlocal QCD operators. By taking nonlocal heavy-light current on the light-cone as an example, we confirm that the collinear singularities are common between QCD operator and the corresponding operator in heavy quark effective theory (HQET), at the leading power of 1/M expansion. Based on a perturbative calculation in operator form at one-loop level, a factorization formula linking QCD and HQET operators is investigated and the matching coefficient is determined. The matching between QCD and HQET light-cone distribution amplitudes (LCDAs) as well as other momentum distributions of hadron can be derived as ...


Truncations Of W (Infinity) Algebras, Mohammed Akram Fellah Mar 2020

Truncations Of W (Infinity) Algebras, Mohammed Akram Fellah

Department of Physics Faculty Publications

We introduce a new class of Vertex Operator Algebras Y+ and their duals, which generalize the standard W-algebras WN of type sl(N). These algebras can be defined in terms of junctions of boundary conditions and interfaces in the GL-twisted N = 4 Super Yang Mills gauge theory.

The aim of these technical calculations is to find the relation of these ortho-symplectic Y-algebras to truncations of even W\infinity.


Long-Range Electroweak Amplitudes Of Single Hadrons From Euclidean Finite-Volume Correlation Functions, Raúl A. Briceño, Zohreh Davoudi, Maxwell T. Hansen, Matthias R. Schindler, Alessandro Baroni Jan 2020

Long-Range Electroweak Amplitudes Of Single Hadrons From Euclidean Finite-Volume Correlation Functions, Raúl A. Briceño, Zohreh Davoudi, Maxwell T. Hansen, Matthias R. Schindler, Alessandro Baroni

Physics Faculty Publications

A relation is presented between single-hadron long-range matrix elements defined in a finite Euclidean spacetime and the corresponding infinite-volume Minkowski amplitudes. This relation is valid in the kinematic region where any number of two-hadron states can simultaneously go on shell, so that the effects of strongly coupled intermediate channels are included. These channels can consist of nonidentical particles with arbitrary intrinsic spins. The result accommodates general Lorentz structures as well as nonzero momentum transfer for the two external currents inserted between the single-hadron states. The formalism, therefore, generalizes the work by Christ et al. [Phys. Rev. D 91, 114510 (2015 ...


Measurement Of The Single-Spin Asymmetry A⁰ʸ In Quasi-Elastic ³He↑(E,E'N) Scattering At 0.4 < Q2 < 1.0 Gev/C2, E. Long, Y.W. Zhang, M. Mihovilovic, M. Canan, S. Golge, L. Zhu Jan 2020

Measurement Of The Single-Spin Asymmetry A⁰ʸ In Quasi-Elastic ³He↑(E,E'N) Scattering At 0.4 2 2, E. Long, Y.W. Zhang, M. Mihovilovic, M. Canan, S. Golge, L. Zhu

Physics Faculty Publications

Due to the lack of free neutron targets, studies of the structure of the neutron are typically made by scattering electrons from either ²H or ³He targets. In order to extract useful neutron information from a ³He target, one must understand how the neutron in a ³He system differs from a free neutron by taking into account nuclear effects such as final state interactions and meson exchange currents. The target single spin asymmetry A⁰ʸ is an ideal probe of such effects, as any deviation from zero indicates effects beyond plane wave impulse approximation. New measurements of the target single spin ...


Quasielastic Lepton Scattering And Back-To-Back Nucleons In The Short-Time Approximation, S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, R. B. Wiringa Jan 2020

Quasielastic Lepton Scattering And Back-To-Back Nucleons In The Short-Time Approximation, S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, R. B. Wiringa

Physics Faculty Publications

Understanding quasielastic electron and neutrino scattering from nuclei has taken on new urgency with current and planned neutrino oscillation experiments, and with electron scattering experiments measuring specific final states, such as those involving nucleon pairs in "back-to-back" configurations. Accurate many-body methods are available for calculating the response of light (A <= 12) nuclei to electromagnetic and weak probes, but they are computationally intensive and only applicable to the inclusive response. In the present work we introduce a novel approach, based on realistic models of nuclear interactions and currents, to evaluate the short-time (high-energy) inclusive and exclusive response of nuclei. The approach accounts reliably for crucial two-nucleon dynamics, including correlations and currents, and provides information on back-to-back nucleons observed in electron and neutrino scattering experiments. We demonstrate that in the quasielastic regime and at moderate momentum transfers both initial- and final-state correlations and two-nucleon currents are important for a quantitatively successful description of the inclusive response and final-state nucleons. Finally, the approach can be extended to include relativistic-kinematical and dynamical-effects, at least approximately in the two-nucleon sector, and to describe the response in the resonance-excitation region.


Gluon Pseudo-Distributions At Short Distances: Forward Case, Ian Balitsky, Wayne Morris, Anatoly Radyushkin Jan 2020

Gluon Pseudo-Distributions At Short Distances: Forward Case, Ian Balitsky, Wayne Morris, Anatoly Radyushkin

Physics Faculty Publications

We present the results that are necessary in the ongoing lattice calculations of the gluon parton distribution functions (PDFs) within the pseudo-PDF approach. We give a classification of possible two-gluon correlator functions and identify those that contain the invariant amplitude determining the gluon PDF in the light-cone z2 → 0 limit. One-loop calculations have been performed in the coordinate representation and in an explicitly gauge-invariant form. We made an effort to separate ultraviolet (UV) and infrared (IR) sources of the ln⁡(−z2)-dependence at short distances z2. The UV terms cancel in the reduced Ioffe-time distribution (ITD), and ...


Developing A High Resolution Zdc For The Eic, J. H. Lee, T. Sako, K. Tanida, M. Murray, Q. Wang, N. Nickel, Y. Yamazaki, Y. Itow, H. Menjo, T. Shibata, C. E. Hyde, V. Baturin, Y. Goto, I. Nakagawa, R. Seidl, K. Kawade, A. Deshpande, B. Schmookler, K. Nakano, T. Chujo, Y. Miyachi Jan 2020

Developing A High Resolution Zdc For The Eic, J. H. Lee, T. Sako, K. Tanida, M. Murray, Q. Wang, N. Nickel, Y. Yamazaki, Y. Itow, H. Menjo, T. Shibata, C. E. Hyde, V. Baturin, Y. Goto, I. Nakagawa, R. Seidl, K. Kawade, A. Deshpande, B. Schmookler, K. Nakano, T. Chujo, Y. Miyachi

Physics Faculty Publications

The Electron Ion Collider offers the opportunity to make un-paralleled multidimen- sional measurements of the spin structure of the proton and nuclei, as well as a study of the onset of partonic saturation at small Bjorken-x [1]. An important requirement of the physics program is the tagging of spectator neutrons and the identification of forward photons. We propose to design and build a Zero Degree Calorimeter, or ZDC, to measure photons and neutrons with excellent energy & position resolution.


Klf Analysis Report: Meson Spectroscopy Simulation Studies, Shankar Adhikari, Moskov Amaryan Jan 2020

Klf Analysis Report: Meson Spectroscopy Simulation Studies, Shankar Adhikari, Moskov Amaryan

Physics Faculty Publications

This analysis report is written as a supplemental for the strange meson spectroscopy part of the KLF proposal submitted to the JLab PAC48.


Measurement Of The Production Cross Section Of Four Top Quarks In Proton-Proton Collisions At 13 Tev, Caleb Fangmeier Dec 2019

Measurement Of The Production Cross Section Of Four Top Quarks In Proton-Proton Collisions At 13 Tev, Caleb Fangmeier

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The field of particle physics involves not only searches for new particles and measurements of their interactions, but also the design and construction of advanced particle detectors. This thesis presents the measurement of the production cross section of four top quarks in proton-proton collisions at a center-of-mass energy of 13 TeV using 137 fb$^{-1}$ of integrated luminosity recorded by the CMS experiment at the LHC. This analysis considers events in the final state of a same-sign pair of leptons, notable for being a final state with relatively few Standard Model background events. A boosted decision tree is utilized to ...


Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura Dec 2019

Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura

Physics Faculty Publications

Recently, a framework has been developed to study form factors of two-hadron states probed by an external current. The method is based on relating finite-volume matrix elements, computed using numerical lattice QCD, to the corresponding infinite-volume observables. As the formalism is complicated, it is important to provide nontrivial checks on the final results and also to explore limiting cases in which more straightforward predictions may be extracted. In this work we provide examples on both fronts. First, we show that, in the case of a conserved vector current, the formalism ensures that the finite-volume matrix element of the conserved charge ...


Pion Valence Structure From Ioffe-Time Parton Pseudodistribution Functions, Bálint Joó, Joseph Karpie, Kostas Orinos, Anatoly V. Radyushkin, David G. Richards, Raza Sabbir Sufian, Savvas Zafeiropoulos Dec 2019

Pion Valence Structure From Ioffe-Time Parton Pseudodistribution Functions, Bálint Joó, Joseph Karpie, Kostas Orinos, Anatoly V. Radyushkin, David G. Richards, Raza Sabbir Sufian, Savvas Zafeiropoulos

Physics Faculty Publications

We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe-time pseudodistributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2 + 1 flavor QCD ensembles using the isotropic-clover fermion action, with lattice dimensions 243 × 64 and 323 × 96 at the lattice spacing of a = 0.127 fm, and with the quark mass equivalent to a pion mass of mπ ≃ 415 MeV. We incorporate several combinations of smeared-point and smeared-smeared pion source-sink interpolation fields in obtaining the lattice QCD matrix elements using the summation method. After ...


Longitudinal Bunch Profile Diagnostic For Magnetized Electron Beams, Mark Stefani, Fay Hannon Nov 2019

Longitudinal Bunch Profile Diagnostic For Magnetized Electron Beams, Mark Stefani, Fay Hannon

Electrical & Computer Engineering Faculty Publications

The study of magnetized electron beam has become a high priority for its use in ion beam cooling as part of electron ion colliders and the potential of easily forming flat beams with a large aspect ratio. In this paper, a new diagnostic is described with the purpose of studying longitudinal and transverse magnetized beam properties. The device is a modification to a typical pepper-pot. Specifically, this 1D pepper-pot was designed for use with a transverse deflecting cavity for longitudinal bunch profile measurements of magnetized beams.


Numerical Exploration Of Three Relativistic Particles In A Finite Volume Including Two-Particle Resonances And Bound States, Fernando Romero-López, Stephen R. Sharpe, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hansen Oct 2019

Numerical Exploration Of Three Relativistic Particles In A Finite Volume Including Two-Particle Resonances And Bound States, Fernando Romero-López, Stephen R. Sharpe, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hansen

Physics Faculty Publications

In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand ...


Comparing Proton Momentum Distributions In A = 2 And 3 Nuclei Via 2H 3H And 3He (E,E′P) Measurements, R. Cruz-Torres, F. Hauenstein, A. Schmidt, D. Nguyen, D. Abrams, H. Albataineh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, D. Bulumulla, C. E. Hyde, V. Khachatryan, M. N.H. Rashad, L. B. Weinstein, Z. Y. Ye, J. Zhang, Jefferson Lab Hall A Tritium Collaboration Oct 2019

Comparing Proton Momentum Distributions In A = 2 And 3 Nuclei Via 2H 3H And 3He (E,E′P) Measurements, R. Cruz-Torres, F. Hauenstein, A. Schmidt, D. Nguyen, D. Abrams, H. Albataineh, S. Alsalmi, D. Androic, K. Aniol, W. Armstrong, J. Arrington, H. Atac, D. Bulumulla, C. E. Hyde, V. Khachatryan, M. N.H. Rashad, L. B. Weinstein, Z. Y. Ye, J. Zhang, Jefferson Lab Hall A Tritium Collaboration

Physics Faculty Publications

We report the first measurement of the (e, e' p) reaction cross-section ratios for Helium-3 (3He), Tritium (3H), and Deuterium (d). The measurement covered a missing momentum range of 40 ≤ pmiss ≤ 550 MeV/c, at large momentum transfer ({Q2} ≈ 1.9 (GeV/c)2) and xB > 1, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with planewave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for 3He/d and 3H/d extend to just above the typical nucleon Fermi-momentum ...


Transverse Uncorrelated Emittance Diagnostic For Magnetized Electron Beams, Fay Hannon, Mark Stefani Oct 2019

Transverse Uncorrelated Emittance Diagnostic For Magnetized Electron Beams, Fay Hannon, Mark Stefani

Electrical & Computer Engineering Faculty Publications

The study of magnetized electron beam has become a high priority for its use in ion beam cooling as part of electron ion colliders and the potential of easily forming flat beams for various applications. In this paper, a purpose-specific diagnostic is described with the intention of studying transverse magnetized beam properties. The device is a modification to the classic pepper-pot, used in this context to measure the uncorrelated components of transverse emittance in addition to the typical effective emittance. The limitations of traditional methods are discussed, and simulated demonstrations of the new technique shown.


Complete Matching For Quasidistribution Functions In Large Momentum Effective Theory, Wei Wang, Jian-Hui Zhang, Shuai Zhao, Ruilin Zhu Oct 2019

Complete Matching For Quasidistribution Functions In Large Momentum Effective Theory, Wei Wang, Jian-Hui Zhang, Shuai Zhao, Ruilin Zhu

Physics Faculty Publications

We complete the procedure of extracting parton distribution functions (PDFs) using large momentum effective theory at leading power accuracy in the hadron momentum. We derive a general factorization formula for the quasi-PDFs in the presence of mixing and give the corresponding hard matching kernel at O(αs), both for the unpolarized and for the polarized quark and gluon quasi-PDFs. Our calculation is performed in a regularization-independent momentum subtraction scheme. The results allow us to match the nonperturbatively renormalized quasi-PDFs to normal PDFs in the presence of mixing and therefore can be used to extract flavor-singlet quark PDFs as well ...


Obituary: Anthony Starace (1945-2019) Sep 2019

Obituary: Anthony Starace (1945-2019)

Anthony F. Starace Publications

Anthony Starace, George Holmes University Professor of physics, died Sept. 5 from complications related to pancreatitis. He was 74.

Starace was born July 24, 1945, in the Queens borough of New York City. He graduated from Stuyvesant High School and earned his bachelor’s degree from Columbia University in 1966 before moving west to the University of Chicago, where he earned his doctorate under adviser Ugo Fano in 1971. It was in Chicago that he met Katherine Fritz of Beatrice, Nebraska, his wife of 51 years.

Following a postdoctoral appointment at Imperial College London, Starace moved to Lincoln as an ...


Unitarity Of The Infinite-Volume Three-Particle Scattering Amplitude Arising From A Finite-Volume Formalism, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe, Adam P. Szczepaniak Sep 2019

Unitarity Of The Infinite-Volume Three-Particle Scattering Amplitude Arising From A Finite-Volume Formalism, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe, Adam P. Szczepaniak

Physics Faculty Publications

Hansen and Sharpe [Phys. Rev. D 92, 114509 (2015)] derived a relation between the scattering amplitude of three identical bosons,M3, and a real function referred to as the divergence-free K matrix and denoted Kdf;3. The result arose in the context of a relation between finite-volume energies and Kdf;3, derived to all orders in the perturbative expansion of a generic low-energy effective field theory. In this work we set aside the role of the finite volume and focus on the infinite-volume relation between Kdf;3 and M3. We show that, for any real ...


Yields Of Weakly Bound Light Nuclei As A Probe Of The Statistical Hadronization Model, Yiming Cai, Thomas D. Cohen, Boris A. Gelman, Yukari Yamauchi Aug 2019

Yields Of Weakly Bound Light Nuclei As A Probe Of The Statistical Hadronization Model, Yiming Cai, Thomas D. Cohen, Boris A. Gelman, Yukari Yamauchi

Publications and Research

The statistical hadronization model successfully describes the yields of hadrons and light nuclei from central heavy-ion collisions over a wide range of energies. It is a simple and efficient phenomenological framework in which the relative yields for very high energy collisions are essentially determined by a single model parameter—the chemical freeze-out temperature. Recent measurements of yields of hadrons and light nuclei covering over nine orders of magnitudes from the ALICE collaboration at the Large Hadron Collider were described by the model with remarkable accuracy with a chemical freeze-out temperature of 156.5 ± 1.5 MeV. A key physical question ...


Search For Resonant Double Higgs Production With Bbzz Decays In The Bbℓℓνν Final State In Pp Collisions At √S = 13 Tev, Rami Kamalieddin Jul 2019

Search For Resonant Double Higgs Production With Bbzz Decays In The Bbℓℓνν Final State In Pp Collisions At √S = 13 Tev, Rami Kamalieddin

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Since the discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments, most of the quantum mechanical properties that describe the long-awaited Higgs boson have been measured. Due to the outstanding work of the LHC, over a hundred of fb−1 of proton collisions data have been delivered to both experiments. Finally, it became sensible for analyses teams to start working with a very low cross section processes involving the Higgs boson, e.g., a recent success in observing ttH and VHbb processes. One of the main remaining untouched topics is a double Higgs boson production. However ...


Dual Superconformal Symmetry Of N = 2 Chern-Simons Theory With Fundamental Matter At Large N, Karthik Inbasekar, Sachin Jain, Sucheta Majumdar, Pranjal Nayak, Turmoli Neogi, Ritam Sinha, Tarun Sharma, V. Umesh Jun 2019

Dual Superconformal Symmetry Of N = 2 Chern-Simons Theory With Fundamental Matter At Large N, Karthik Inbasekar, Sachin Jain, Sucheta Majumdar, Pranjal Nayak, Turmoli Neogi, Ritam Sinha, Tarun Sharma, V. Umesh

Physics and Astronomy Faculty Publications

Dual conformal symmetry and Yangian symmetry are symmetries of amplitudes that have aided the study of scattering amplitudes in highly supersymmetric theories like N = 4 SYM and ABJM. However, in general such symmetries are absent from the theories with lesser or no supersymmetry. In this paper, we show that the tree level 2 → 2 scattering amplitude in the 3d N = 2 Chern-Simons theory coupled to a fundamental chiral multiplet is dual superconformal invariant. In the ’t Hooft large N limit, the 2 → 2 scattering amplitude in this theory has been shown to be tree-level exact in non-anyonic channels, while having ...


Factorization Of Jet Cross Sections In Heavy-Ion Collisions, Jian-Wei Qiu, Felix Ringer, Nobuo Sato, Pia Zurita Jun 2019

Factorization Of Jet Cross Sections In Heavy-Ion Collisions, Jian-Wei Qiu, Felix Ringer, Nobuo Sato, Pia Zurita

Physics Faculty Publications

We propose a new phenomenological approach to establish QCD factorization of jet cross sections in the heavy-ion environment. Starting from a factorization formalism in proton-proton collisions, we introduce medium modified jet functions to capture the leading interaction of jets with the hot and dense QCD medium. A global analysis using a Monte Carlo sampling approach is performed in order to reliably determine the new jet functions from the nuclear modification factor of inclusive jets at the LHC. We find that gluon jets are significantly more suppressed due to the presence of the medium than quark jets. In addition, we observe ...


Performance Of Plastic Electron Optics Components Fabricated Using A 3d Printer, Phillip Wiebe, Peter Beierle, Hua-Chieh Shao, Bret Gergely, Anthony F. Starace, Herman Batelaan May 2019

Performance Of Plastic Electron Optics Components Fabricated Using A 3d Printer, Phillip Wiebe, Peter Beierle, Hua-Chieh Shao, Bret Gergely, Anthony F. Starace, Herman Batelaan

Anthony F. Starace Publications

We show images produced by an electron beam deflector, a quadrupole lens and a einzel lens fabricated from conducting and non-conducting plastic using a 3D printer. Despite the difficulties associated with the use of plastics in vacuum, such as outgassing, poor conductivity, and print defects, the devices were used successfully in vacuum to steer, stretch and focus electron beams to millimeter diameters. Simulations indicate that much smaller focus spot sizes might be possible for such 3D-printed plastic electron lenses taking into account some possible surface defects. This work was motivated by our need to place electron optical components in difficult-to-access ...


Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani May 2019

Slow Light With Interleaved P-N Junction To Enhance Performance Of Integrated Mach-Zehnder Silicon Modulators, Marco Passoni, Dario Gerace, Liam O'Faolain, Lucio Claudio Andreani

Cappa Publications

Slow light is a very important concept in nanophotonics, especially in the context of photonic crystals. In this work, we apply our previous design of band-edge slow light in silicon waveguide gratings [M. Passoni et al, Opt. Express 26, 8470 (2018)] to Mach-Zehnder modulators based on the plasma dispersion effect. The key idea is to employ an interleaved p-n junction with the same periodicity as the grating, in order to achieve optimal matching between the electromagnetic field profile and the depletion regions of the p-n junction. The resulting modulation efficiency is strongly improved as compared to common modulators based on ...


Analytic Generalized Description Of A Perturbative Nonparaxial Elegant Laguerre-Gaussian Phasor For Ultrashort Pulses In The Time Domain, Andrew Vikartofsky, Ethan C. Jahns, Anthony F. Starace May 2019

Analytic Generalized Description Of A Perturbative Nonparaxial Elegant Laguerre-Gaussian Phasor For Ultrashort Pulses In The Time Domain, Andrew Vikartofsky, Ethan C. Jahns, Anthony F. Starace

Anthony F. Starace Publications

An analytic expression for a polychromatic phasor representing an arbitrarily short elegant Laguerre-Gauss (eLG) laser pulse of any spot size and LG mode is presented in the time domain as a nonrecursive, closed-form perturbative expansion valid to any order of perturbative correction. This phasor enables the calculation of the complex electromagnetic fields for such beams without requiring the evaluation of any Fourier integrals. It is thus straightforward to implement in analytical or numerical applications involving eLG pulses.