Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Condensed Matter Physics

University of Richmond

Optical control

Articles 1 - 1 of 1

Full-Text Articles in Physics

Light Sensitive Memristor With Bi-Directional And Wavelength-Dependent Conductance Control, P. Maier, F. Hartmann, Mariama Rebello Sousa Dias, M. Emmerling, C. Schneider, L. K. Castelano, M. Kamp, G. E. Marques, V. Lopez-Richard, L. Worschech, S. Höfling Jan 2016

Light Sensitive Memristor With Bi-Directional And Wavelength-Dependent Conductance Control, P. Maier, F. Hartmann, Mariama Rebello Sousa Dias, M. Emmerling, C. Schneider, L. K. Castelano, M. Kamp, G. E. Marques, V. Lopez-Richard, L. Worschech, S. Höfling

Physics Faculty Publications

We report the optical control of localized charge on positioned quantum dots in an electro-photosensitive memristor. Interband absorption processes in the quantum dot barrier matrix lead to photogenerated electron-hole-pairs that, depending on the applied bias voltage, charge or discharge the quantum dots and hence decrease or increase the conductance. Wavelength-dependent conductance control is observed by illumination with red and infrared light, which leads to charging via interband and discharging via intraband absorption. The presented memristor enables optical conductance control and may thus be considered for sensory applications in artificial neural networks as light-sensitive synapses or optically tunable memories.