Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Manifestations Of Classical Physics In The Quantum Evolution Of Correlated Spin States In Pulsed Nmr Experiments, Martin K. Ligare Jan 2017

Manifestations Of Classical Physics In The Quantum Evolution Of Correlated Spin States In Pulsed Nmr Experiments, Martin K. Ligare

Faculty Journal Articles

Multiple-pulse NMR experiments are a powerful tool for the investigation of mole- cules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi- classical vector representations. In this paper I present a new way in which to inter- pret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identi- cally to those of classical …


Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe Jan 2016

Concerted Hydrogen-Bond Breaking By Quantum Tunneling In The Water Hexamer Prism, Jeremy O. Richardson, Cristobal Perez, Simon Lobsiger, Adam A. Reid, Berhane Temelso, George C. Shields, Zbigniew Kisiel, David J. Wales, Brooks H. Pate, Stuart C. Althorpe

Faculty Journal Articles

The nature of the intermolecular forces between water molecules is the same in small hydrogen-bonded clusters as in the bulk. The rotational spectra of the clusters therefore give insight into the intermolecular forces present in liquid water and ice. The water hexamer is the smallest water cluster to support low-energy structures with branched three-dimensional

hydrogen-bond networks, rather than cyclic two-dimensional topologies. Here we report measurements of splitting patterns in rotational transitions of the water hexamer prism, and we used quantum simulations to show that they result from geared and antigeared rotations of a pair of water molecules. Unlike previously reported …


Hydration Of The Sulfuric Acid−Methylamine Complex And Implications For Aerosol Formation, Danielle J. Bustos, Berhane Temelso, George C. Shields Apr 2014

Hydration Of The Sulfuric Acid−Methylamine Complex And Implications For Aerosol Formation, Danielle J. Bustos, Berhane Temelso, George C. Shields

Faculty Journal Articles

The binary H2SO4−H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H …


Computational Study Of The Hydration Of Sulfuric Acid Dimers: Implications For Acid Dissociation And Aerosol Formation, Berhane Temelso, Thuong Ngoc Phan, George C. Shields Jan 2012

Computational Study Of The Hydration Of Sulfuric Acid Dimers: Implications For Acid Dissociation And Aerosol Formation, Berhane Temelso, Thuong Ngoc Phan, George C. Shields

Faculty Journal Articles

We have investigated the thermodynamics of sulfuric acid dimer hydration using ab initio quantum mechanical methods. For (H2SO4)2(H2O)n where n = 0−6, we employed high-level ab initio calculations to locate the most stable minima for each cluster size. The results presented herein yield a detailed understanding of the first deprotonation of sulfuric acid as a function of temperature for a system consisting of two sulfuric acid molecules and up to six waters. At 0 K, a cluster of two sulfuric acid molecules and one water remains undissociated. Addition of a second …