Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Chemical Engineering

PDF

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 89

Full-Text Articles in Physics

Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner Aug 2014

Does A Plastron Improve Heat Transfer?, Madani A. Khan, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Superamphiphobic surfaces strongly repel both water and oils. In this work, aluminum coupons are processed by sanding with various grit of sand paper to impart microscale roughness. Subsequent submersion of the aluminum substrate in boiling water grows nanoscale grass-like structures. The oxide layer of Al is slightly soluble in water. During a fast diffusion/equilibrium, Al2O3 nanograss grows on the surface. A low energy coating is then deposited on the surface. The micro and nanoscale features create re-entrant structures that trap air enabling contact liquid to be in a Cassie-Baxter state. Superamphiphobicity of the samples were confirmed by …


A Soft Condensed Matter Approach Towards Mathematical Modelling Of Mass Transport And Swelling In Food Grains, Michael Chapwanya, N. Misra Aug 2014

A Soft Condensed Matter Approach Towards Mathematical Modelling Of Mass Transport And Swelling In Food Grains, Michael Chapwanya, N. Misra

Articles

Soft condensed matter (SCM) physics has recently gained importance for a large class of engineering materials. The treatment of food materials from a soft matter perspective, however, is only at the surface and is gaining importance for understanding the complex phenomena and structure of foods. In this work, we present a theoretical treatment of navy beans from a SCM perspective to describe the hydration kinetics. We solve the transport equations within a porous matrix and employ the Flory–Huggin’s equation for polymer–solvent mixture to balance the osmotic pressure. The swelling of the legume seed is modelled as a moving boundary with …


In-Package Nonthermal Plasma Degradation Of Pesticides On Fresh Produce, N. Misra, Shashi Pankaj, Tony Walsh, Finbarr O'Regan, Paula Bourke, Patrick Cullen Feb 2014

In-Package Nonthermal Plasma Degradation Of Pesticides On Fresh Produce, N. Misra, Shashi Pankaj, Tony Walsh, Finbarr O'Regan, Paula Bourke, Patrick Cullen

Articles

In-package nonthermal plasma (NTP) technology is a novel technology for the decontamination of foods and biological materials. This study presents the first report on the potential of the technology for the degradation of pesticide residues. A cocktail of pesticides, namely Azoxystrobin, Cyprodinil, Fludioxonil and Pyriproxyfen was tested on strawberries. The concentrations of these pesticides were monitored in priori and post- plasma treatment using GC-MS/MS. An applied voltage and time dependent degradation of the pesticides was observed for treatment voltages of 60, 70 and 80 kV and treatment durations ranging from 1 to 5 min, followed by 24 h in-pack storage. …


Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar Jan 2014

Plasma Processes And Polymers Special Issue On: Plasma And Cancer, Mounir Laroussi, Michael Keidar

Electrical & Computer Engineering Faculty Publications

During the last two decades, research efforts on the application of low temperature plasmas in biology and medicine have positioned nonequilibrium lowtemperature plasmas as a technology that has the potential of revolutionizing healthcare.[1,2] Low temperature plasmas can be applied in direct contact with living tissues to inactivate bacteria,[3] to disinfect wounds and accelerate wound healing,[4] and to induce damage in some cancer cells.[5–11]


Differential Spectral Imaging Of The Cn Violet Band In Laser-Induced Plasmas On Tnt Simulant Molecules, J. Merten, M. Jones, S. Hoke, S. Allen Jan 2014

Differential Spectral Imaging Of The Cn Violet Band In Laser-Induced Plasmas On Tnt Simulant Molecules, J. Merten, M. Jones, S. Hoke, S. Allen

Publications

Dual channel emission imaging of m-nitrobenzoic acid and benzoic acid was performed in order to visualize the morphology of the CN violet band emission of a TNT analogue. The CN channel was corrected for continuum emission using a simultaneously imaged background channel. Simultaneous dual channel imaging alleviated problems with shot to shot variation in the plasma morphology due to the friable substrates and showed differences between plasmas formed on the two targets.


Rheological Signatures In Limit Cycle Behaviour Of Dilute, Active, Polar Liquid Crystalline Polymers In Steady Shear, M. Gregory Forest, Panon Phuworawong, Qi Wang, Ruhai Zhou Jan 2014

Rheological Signatures In Limit Cycle Behaviour Of Dilute, Active, Polar Liquid Crystalline Polymers In Steady Shear, M. Gregory Forest, Panon Phuworawong, Qi Wang, Ruhai Zhou

Mathematics & Statistics Faculty Publications

We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207-5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest …


Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii Sep 2013

Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii

FIU Electronic Theses and Dissertations

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system …


Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson Aug 2013

Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson

STAR Program Research Presentations

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is a converted 747SP that houses a 2.5 m telescope that observes the sky through an opening in the side of the aircraft. Because it flies at altitudes up to 45,000 feet, SOFIA gets 99.99% transmission in the infrared. Multiple science instruments mount one at a time on the telescope to interpret infrared and visible light from target sources. Ball Infrared Black (BIRB) currently coats everything that the optics sees inside the telescope assembly (TA) cavity in order to eliminate noise from the glow of background sky, aircraft exhaust, and other sources. A …


Note: A Simple Thermal Gradient Annealing Unit For The Treatment Of Thin Films, C. J. Metting, Johnathan K. Bunn, Ellen A. Underwood, Yihao Zhu, G. Koley, T. Crawford, Jason R. Hattrick-Simpers Mar 2013

Note: A Simple Thermal Gradient Annealing Unit For The Treatment Of Thin Films, C. J. Metting, Johnathan K. Bunn, Ellen A. Underwood, Yihao Zhu, G. Koley, T. Crawford, Jason R. Hattrick-Simpers

Faculty Publications

A gradient annealing cell has been developed for the high-throughput study of thermalannealing effects on thin-film libraries in different environments. The inexpensive gradientannealing unit permits temperature gradients as large as 28 °C/mm and can accommodate samples ranging in length from 13 mm to 51 mm. The system was validated by investigating the effects of annealing temperature on the crystallinity, resistivity, and transparency of tin-doped indium oxide deposited on a glass substrate by magnetron sputtering. The unit developed in this work will permit the rapid optimization of materials properties such as crystallinity, homogeneity, and conductivity across a variety of applications.


Ultrasound For Improved Crystallisation In Food Processing, N. Misra, Navneet Deora, Brijesh Tiwari, Patrick Cullen Jan 2013

Ultrasound For Improved Crystallisation In Food Processing, N. Misra, Navneet Deora, Brijesh Tiwari, Patrick Cullen

Articles

Within the food industry, controlling crystallisation is a key factor governing food structure, texture and consumer appeal, with some foods requiring the promotion of crystallisation in a controlled manner (e.g. chocolate) and others a check (e.g. in honey). Sonocrystallisation is the application of ultrasound energy to control the nucleation of a crystallisation process. The use of power ultrasound provides a non-invasive approach to producing crystals with desired properties. Sonocrystallisation facilitates process control, primarily by modulating crystal size distribution and morphology. This paper details the governing mechanisms of sonocrystallisation. Proven and potential applications of the process in foods, including chocolates, honey, …


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Jan 2013

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Faculty Publications

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Nanoenergetic Composite Based On I2o5/Al For Biological Agent Defeat, Mkhitar Hobosyan, Alexander V. Kazanksy, Karen S. Martirosyan Jun 2012

Nanoenergetic Composite Based On I2o5/Al For Biological Agent Defeat, Mkhitar Hobosyan, Alexander V. Kazanksy, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

The risk of bioterrorism events involving the intentional airborne release of contagious agents has led to development of new approaches for bio agent defeat technologies both indoors and outdoors. This report describes nanoenergetic gas generators (NGG) system that exhibit long term stability and superior release of biocidal substances for destruction of pathogenic bacteria. The effect of iodine vaporization on destroying of Escherichia coli (E-coli, HB101 K-12 strain) by using expressing Green Fluorescent Protein (GFP) was investigated. HB101 K-12 has been genetically modified to prevent its growth unless grown on an enriched medium. To obtain quantitative data we used pGLO transformation …


Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Jan 2012

Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady- state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.


Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Plasmonic Nanogels With Robustly Tunable Optical Properties, Tao Cong, Satvik N. Wani, Georo Zhou, Elia Baszczuk, Radhakrishna Sureshkumar Aug 2011

Plasmonic Nanogels With Robustly Tunable Optical Properties, Tao Cong, Satvik N. Wani, Georo Zhou, Elia Baszczuk, Radhakrishna Sureshkumar

Biomedical and Chemical Engineering - All Scholarship

Low viscosity fluids with tunable optical properties can be processed to manufacture thin film and interfaces for molecular detection, light trapping in photovoltaics and reconfigurable optofluidic devices. In this work, self-assembly in wormlike micelle solutions is used to uniformly distribute various metallic nanoparticles to produce stable suspensions with localized, multiple wavelength or broad-band optical properties. Their spectral response can be robustly modified by varying the species, concentration, size and/or shape of the nanoparticles. Structure, rheology and optical properties of these plasmonic nanogels as well as their potential applications to efficient photovoltaics design are discussed.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Scaling Properties At Freeze-Out In Relativistic Heavy-Ion Collisions, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, B. D. Anderson, S. Bueltmann, I. Koralt, D. Plyku, Star Collaboration Jan 2011

Scaling Properties At Freeze-Out In Relativistic Heavy-Ion Collisions, M. M. Aggarwal, Z. Ahammed, A. V. Alakhverdyants, I. Alekseev, J. Alford, B. D. Anderson, S. Bueltmann, I. Koralt, D. Plyku, Star Collaboration

Physics Faculty Publications

Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu+Cu collisions at √sNN=200 and 62.4 GeV. The data are studied with hydrodynamically motivated blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au + Au and pp collisions, the dependence of freeze-out parameters on the system size is also explored. This multidimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance …


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar Jan 2011

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar

Faculty Publications

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational presentation for senior physics majors


Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner Mar 2010

Morphological Evolution Of Single-Crystal Ultrathin Solid Films, Mikhail Khenner

Mathematics Faculty Publications

An introduction to mathematical modeling of ultrathin solid films and the role of such modeling in nanotechnologies: Educational/Research presentation for senior physics majors


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev Jan 2010

Oscillatory And Monotonic Modes Of Long-Wave Marangoni Convection In A Thin Film, Sergey Shklyaev, Mikhail Khenner, Alexei Alabuzhev

Mathematics Faculty Publications

We study long-wave Marangoni convection in a layer heated from below. Using the scaling k=O Bi, where k is the wave number and Bi is the Biot number, we derive a set of amplitude equations. Analysis of this set shows presence of monotonic and oscillatory modes of instability. Oscillatory mode has not been previously found for such direction of heating. Studies of weakly nonlinear dynamics demonstrate that stable steady and oscillatory patterns can be found near the stability threshold.


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam …


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam …


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Dec 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

A mathematical model for the evolution of pulsed laser-irradiated, molten metallic films has been developed using the lubrication theory. The heat transfer problem that incorporates the absorbed heat from a single laser beam or the interfering laser beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the reflectivity, the peak laser beam …


Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello Jan 2009

Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello

Masters Theses 1911 - February 2014

Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in …


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Jan 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

Mathematics Faculty Publications

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and …


Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner Jan 2009

Thermocapillary Effects In Driven Dewetting And Self-Assembly Of Pulsed Laser-Irradiated Metallic Films, Agegnehu Atena, Mikhail Khenner

Mathematics Faculty Publications

In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and …