Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Physics

Properties Of Cu(In,Ga) Se2 Thin Films And Solar Cells Deposited By Hybrid Process, S. Marsillac, H. Khatri, K. Aryal, R. W. Collins Feb 2012

Properties Of Cu(In,Ga) Se2 Thin Films And Solar Cells Deposited By Hybrid Process, S. Marsillac, H. Khatri, K. Aryal, R. W. Collins

Electrical & Computer Engineering Faculty Publications

Cu(In,Ga)Se-2 solar cells were fabricated using a hybrid cosputtering/evaporation process, and efficiencies as high as 12.4% were achieved. The films were characterized by energy-dispersive X-ray spectroscopy, glancing incidence X-ray diffraction, scanning electron microscopy, auger electron spectroscopy, and transmittance and reflectance spectroscopy, and their properties were compared to the ones of films deposited by coevaporation. Even though the films were relatively similar, the ones deposited by the hybrid process tend to have smaller grains with a slightly preferred orientation along the (112) axis and a rougher surface. Both types of films have uniform composition through the depth. Characterization of these films …


In Situ And Ex Situ Studies Of Molybdenum Thin Films Deposited By Rf And Dc Magnetron Sputtering As A Back Contact For Cigs Solar Cells, K. P. Aryal, H. Khatri, R. W. Collins, S. Marsillac Jan 2012

In Situ And Ex Situ Studies Of Molybdenum Thin Films Deposited By Rf And Dc Magnetron Sputtering As A Back Contact For Cigs Solar Cells, K. P. Aryal, H. Khatri, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

Molybdenum thin films were deposited by rf and dc magnetron sputtering and their properties analyzed with regards to their potential application as a back contact for CIGS solar cells. It is shown that both types of films tend to transition from tensile to compressive strain when the deposition pressure increases, while the conductivity and the grain size decreas. The nucleation of the films characterized by in situ and real time spectroscopic ellipsometry shows that both films follow a Volmer-Weber growth, with a higher surface roughness and lower deposition rate for the rf deposited films. The electronic relaxation time was then …


Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali Jan 2011

Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Low temperature epitaxy of Ge quantum dots on Si (100) - (2×1) by femtosecond pulsed laser deposition under femtosecond laser excitation was investigated. Reflection high-energy electron diffraction and atomic force microscopy were used to analyze the growth mode and morphology. Epitaxial growth was achieved at ∼70 °C by using femtosecond laser excitation of the substrate. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3537813]


Nonthermal Laser-Induced Formation Of Crystalline Ge Quantum Dots On Si(100), M. S. Hegazy, H. E. Elsayed-Ali Jan 2008

Nonthermal Laser-Induced Formation Of Crystalline Ge Quantum Dots On Si(100), M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The effects of laser-induced electronic excitations on the self-assembly of Ge quantum dots on Si (100) - (2×1) grown by pulsed laser deposition are studied. Electronic excitations due to laser irradiation of the Si substrate and the Ge film during growth are shown to decrease the roughness of films grown at a substrate temperature of ∼120 °C. At this temperature, the grown films are nonepitaxial. Electronic excitation results in the formation of an epitaxial wetting layer and crystalline Ge quantum dots at ∼260 °C, a temperature at which no crystalline quantum dots form without excitation under the same deposition conditions. …


Activation Energy Of Surface Diffusion And Terrace Width Dynamics During The Growth Of In (4×3) On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2008

Activation Energy Of Surface Diffusion And Terrace Width Dynamics During The Growth Of In (4×3) On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The nucleation and growth of indium on a vicinal Si (100) - (2×1) surface at high temperature by femtosecond pulsed laser deposition was investigated by in situ reflection high energy electron diffraction (RHEED). RHEED intensity relaxation was observed for the first ∼2 ML during the growth of In (4×3) by step flow. From the temperature dependence of the rate of relaxation, an activation energy of 1.4±0.2 eV of surface diffusion was determined. The results indicate that indium small clusters diffused to terrace step edges with a diffusion frequency constant of (1.0±0.1) × 1011 s-1. The RHEED specular …


Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2007

Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The growth of indium on a vicinal Si (100) - (2×1) surface at room temperature by femtosecond pulsed laser deposition (fsPLD) was investigated by in situ reflection high-energy electron diffraction (RHEED). Recovery of the RHEED intensity was observed between laser pulses and when the growth was terminated. The surface diffusion coefficient of deposited In on initial two-dimensional (2D) In- (2×1) layer was determined. As growth proceeds, three-dimensional In islands grew on the 2D In- (2×1) layer. The RHEED specular profile was analyzed during film growth, while the grown In islands were examined by ex situ atomic force microscopy. The full …


Growth Of Ge Quantum Dots On Si(100)-(2×1) By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2006

Growth Of Ge Quantum Dots On Si(100)-(2×1) By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled germanium quantum dots (QDs) were grown on Si(100)-(2×1) by pulsed laser deposition. In situ reflection-high energy electron diffraction (RHEED) and postdeposition atomic force microscopy are used to study the growth of the QDs. Several films of different thicknesses were grown at a substrate temperature of 400 °C using a Q-switched Nd:yttrium aluminum garnet laser (λ= 1064 nm, 40 ns pulse width, 23 J/cm 2 fluence, and 10 Hz repetition rate). At low film thicknesses, hut clusters that are faceted by different planes, depending on their height, are observed after the completion of the wetting layer. With increasing film thickness, …


Melting And Solidification Study Of As-Deposited And Recrystallized Bi Thin Films, M. K. Zayed, H. E. Elsayed-Ali Jan 2006

Melting And Solidification Study Of As-Deposited And Recrystallized Bi Thin Films, M. K. Zayed, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Melting and solidification of as-deposited and recrystallized Bi crystallites, deposited on highly oriented 002-graphite at 423 K, were studied using reflection high-energy electron diffraction (RHEED). Films with mean thickness between 1.5 and 33 ML (monolayers) were studied. Ex situ atomic force microscopy was used to study the morphology and the size distribution of the formed nanocrystals. The as-deposited films grew in the form of three-dimensional crystallites with different shapes and sizes, while those recrystallized from the melt were formed in nearly similar shapes but different sizes. The change in the RHEED pattern with temperature was used to probe the melting …


Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2005

Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled Ge quantum dots are grown on Si(100)- 2×1 by pulsed laser deposition. The growth is studied by in situ reflection high-energy electron diffraction and postdeposition atomic force microscopy. After the completion of the wetting layer, transient hut clusters, faceted by different planes, are observed. When the height of these clusters exceeded a certain value, the facets developed into {305} planes. Some of these huts become {305}-faceted pyramids as the film mean thickness was increased. With further thickness increase, dome clusters developed on the expense of these pyramids. © 2005 American Institute of Physics. [DOI: 10.1063/1.1949285]


Condensation On (002) Graphite Of Liquid Bismuth Far Below Its Bulk Melting Point, M. K. Zayed, H. E. Elsayed-Ali Jan 2005

Condensation On (002) Graphite Of Liquid Bismuth Far Below Its Bulk Melting Point, M. K. Zayed, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Condensation of thermally evaporated Bi on (002) graphite, at temperatures of 300-523K, was studied using in situ reflection high-energy electron diffraction (RHEED) and room temperature ex situ atomic force microscopy (AFM). For deposition at temperatures below 415±5K, transmission RHEED patterns of Bi appeared at an average thickness of ∼0.5 monolayer (ML). AFM images showed that the film consisted of crystallites in the shape of triangular step pyramids with step heights corresponding to single and double Bi layers in the [111] direction. This morphology indicates crystallization from the vapor. For deposition at higher temperatures, diffuse RHEED patterns appeared independent of the …


Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet Jan 2004

Are Microbubbles Necessary For The Breakdown Of Liquid Water Subjected To A Submicrosecond Pulse?, R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, J. Gaudet

Electrical & Computer Engineering Faculty Publications

Electrical breakdown in homogeneous liquid water for an ∼ 100 ns voltage pulse is analyzed. It is shown that electron-impact ionization is not likely to be important and could only be operative for low-density situations or possibly under optical excitation. Simulation results also indicate that field ionization of liquid water can lead to a liquid breakdown provided the ionization energies were very low in the order of 2.3eV. Under such conditions, an electric-field collapse at the anode and plasma propagation toward the cathode, with minimal physical charge transport, is predicted. However, the low, unphysical ionization energies necessary for matching …


Atomic Hydrogen Cleaning Of Inp(100): Electron Yield And Surface Morphology Of Negative Electron Affinity Activated Surfaces, M. A. Hafez, H. E. Elsayed-Ali Jan 2002

Atomic Hydrogen Cleaning Of Inp(100): Electron Yield And Surface Morphology Of Negative Electron Affinity Activated Surfaces, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Atomic hydrogen cleaning of the InP(100) surface has been investigated using quantitative reflection high-energy electron diffraction. The quantum efficiency of the surface when activated to negative electron affinity was correlated with surface morphology. The electron diffraction patterns showed that hydrogen cleaning is effective in removing surface contaminants, leaving a clean, ordered, and (2×4)-reconstructed surface. After activation to negative electron affinity, a quantum efficiency of ∼6% was produced in response to photoactivation at 632 nm. Secondary electron emission from the hydrogen-cleaned InP(100)-(2×4) surface was measured and correlated to the quantum efficiency. The morphology of the vicinal InP(100) surface was investigated using …


Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

An acceleration element is proposed for compressing the electron pulse duration in a femtosecond photoelectron gun. The element is a compact metal cavity with curved-shaped walls. An external voltage is applied to the cavity where a special electric field forms in such a way that the slow electrons in the electron pulse front are accelerated more than the fast electrons, and consequently the electron pulse duration will be compressed. The distribution of the electric field inside the acceleration cavity is analyzed for the geometry of the cavity. The electron dynamics in this acceleration cavity is also investigated numerically. Numerical results …


Electron Pulse Broadening Due To Space Charge Effects In A Photoelectron Gun For Electron Diffraction And Streak Camera Systems, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Electron Pulse Broadening Due To Space Charge Effects In A Photoelectron Gun For Electron Diffraction And Streak Camera Systems, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The electron pulse broadening and energy spread, caused by space charge effects, in a photoelectron gun are studied analytically using a fluid model. The model is applicable in both the photocathode-to-mesh region and the postanode electron drift region. It is found that space charge effects in the photocathode-to-mesh region are generally unimportant even for subpicosecond pulses. However, because of the long drift distance, electron pulse broadening due to space charge effects in the drift region is usually significant and could be much larger than the initial electron pulse duration for a subpicosecond electron pulse. Space charge effects can also lead …


A New Compensating Element For A Femtosecond Photoelectron Gun, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2001

A New Compensating Element For A Femtosecond Photoelectron Gun, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Design and analysis of a new compensating element for improving the electron pulse front and compressing the pulse duration in a femtosecond photoelectron gun are described. The compensating element is a small metallic cylindrical cavity in which an external voltage is applied in such a way that a special electric field forms and interacts with the electron pulse. This electric field reduces the distances between the faster and slower electrons inside the cavity and efficiently compensates for electron pulse broadening caused by the photoelectron energy spread and space charge effects. Poisson's equation and the equation of motion are solved to …


Surface Debye Temperature Measurement With Reflection High-Energy Electron Diffraction, H. E. Elsayed-Ali Jan 1996

Surface Debye Temperature Measurement With Reflection High-Energy Electron Diffraction, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Measurement of the surface mean-square atomic vibrational amplitude, or equivalently the surface Debye temperature, with reflection high-energy electron diffraction is discussed. Low-index surfaces of lead are used as examples. Particular details are given about the temperature-dependent diffraction pattern of Pb(100) in the Debye-Waller region. The use of reflection high-energy electron diffraction for measurement of the substrate surface temperature in thin-film deposition chambers is suggested. © 1996 American Institute of Physics.


Scanning-Tunneling-Microscopy Study Of Pb On Si(111), D. Tang, H. E. Elsayed-Ali, J. Wendelken, J. Xu Jan 1995

Scanning-Tunneling-Microscopy Study Of Pb On Si(111), D. Tang, H. E. Elsayed-Ali, J. Wendelken, J. Xu

Electrical & Computer Engineering Faculty Publications

Scanning-tunneling microscopy has been used to study temperature and coverage dependence of the structure of lead on the Si(111)-7×7 surface. For low Pb coverage, the Pb atoms favored the faulted sites. The ratio between the number of Pb atoms on faulted to unfaulted sites increased after sample annealing. An energy difference of 0.05 eV associated with a Pb atom on these two sites is estimated. The mobility of Pb atoms on Si(111) was observed at a temperature as low as 260°C for a coverage of 0.1 and 1 ML. © 1995 The American Physical Society.


Effects Of Quantum Noise On A Two-Level System In A Single-Mode Cavity, Linda L. Vahala Aug 1990

Effects Of Quantum Noise On A Two-Level System In A Single-Mode Cavity, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

The effects of quantum noise on a two-level system in the bad-cavity regime are considered perturbatively in the form of closure at the pair-correlation level. It is found that pair-correlation effects can reduce the level of semiclassical chaos. However, under the rotating-wave approximation (RWA), quantum noise can lead to chaos if there is an initial population inversion, while the full RWA Hamiltonian system remains integrable.


Comment On "Orientation, Alignment, And Hyperfine Effects On Dissociation Of Diatomic Molecules To Open Shell Atoms", Mark D. Havey, Linda L. Vahala Jan 1987

Comment On "Orientation, Alignment, And Hyperfine Effects On Dissociation Of Diatomic Molecules To Open Shell Atoms", Mark D. Havey, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

A recent paper in this journal [Y. B. Band e t a l., J. Chem. Phys. 8 4, 3762 (1986)] reported parameters describing orientation and alignment produced, in an axial recoil limit, by one photondissociation of diatomic molecules. Reported also were values, applicable to the resonance transitions of the alkali atoms, for orientation and alignment depolarization coefficients. Most of the numerical values reported for the coefficients were incorrect, in some cases by as much as a factor of 2. We report a tabulation of correct depolarization coefficients applicable to the resonance transitions of common alkali isotopes. Further, the coefficients …


Nonadiabatic Theory Of Fine-Structure Branching Cross Sections For Na-He, Na-Ne, And Na-Ar Optical Collisions, Linda L. Vahala, P. S. Julienne, Mark D. Havey Jan 1986

Nonadiabatic Theory Of Fine-Structure Branching Cross Sections For Na-He, Na-Ne, And Na-Ar Optical Collisions, Linda L. Vahala, P. S. Julienne, Mark D. Havey

Electrical & Computer Engineering Faculty Publications

The nonadiabatic close-coupled theory of atomic collisions in a radiation field is generalized to include electron spin and is used to consider the weak-field Narare-gas (RG) optical collision Na(2S1/2)+RG+nhν μNa(2Pj)+RG+(n-1). The effects of detuning and incident energy on the branching into the atomic Na 3p2P3/2 and 3p2P1/2 states are examined. The cross sections σ(j) are found to have a strong asymmetry between red and blue detuning as well as a complex threshold and resonance structure dependence on energy. A partial cross-section analysis …


Systematic Estimate Of Binding Energies Of Weakly Bound Diatomic Molecules, Linda L. Vahala, Mark D. Havey Jan 1984

Systematic Estimate Of Binding Energies Of Weakly Bound Diatomic Molecules, Linda L. Vahala, Mark D. Havey

Electrical & Computer Engineering Faculty Publications

There is often insufficient spectroscopic data for a full RKR inversion to yield a potential for weakly bound diatomic molecules. In these cases, parametrized functions such as the Morse or Thakkar potentials may be used to obtain estimates of the binding energy. The Thakkar potential is more flexible, and has been used successfully on some weakly bound systems. In the more usual case, the Thakkar parameter p, which determines long range behavior R-p, is chosen by p=-a1-1, where a1 is the first Dunham coefficient; p is usually noninteger. The authors present …