Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Atomic, Molecular and Optical Physics

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 1074

Full-Text Articles in Physics

A Fully Quantum Calculation Of Broadening And Shifting Coefficients Of The D1 And D2 Spectral Lines Of Alkali-Metal Atoms Colliding With Noble-Gas Atoms, Robert D. Loper, David E. Weeks Oct 2020

A Fully Quantum Calculation Of Broadening And Shifting Coefficients Of The D1 And D2 Spectral Lines Of Alkali-Metal Atoms Colliding With Noble-Gas Atoms, Robert D. Loper, David E. Weeks

Faculty Publications

We use the Baranger model to compute collisional broadening and shift rates for the D1 and D2 spectral lines of M + Ng, where M = K, Rb, Cs and Ng = He, Ne, Ar. Scattering matrix elements are calculated using the channel packet method, and non-adiabatic wavepacket dynamics are determined using the split-operator method together with a unitary transformation between adiabatic and diabatic representations. Scattering phase shift differences are weighted thermally and are integrated over temperatures ranging from 100 K to 800 K. We find that predicted broadening rates compare well with experiment, but shift rates are predicted poorly by ...


H-Atom Ladder Operator Revisited, Carl W. David Aug 2020

H-Atom Ladder Operator Revisited, Carl W. David

Chemistry Education Materials

An error laden note (Am. J. Phys., 34, 984,(1966)) concerning the ladder operator solution to the hydrogen atom electronic energy levels is corrected.


A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings Aug 2020

A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated ...


Physics 516: Electromagnetic Phenomena (Spring 2020), Philip C. Nelson May 2020

Physics 516: Electromagnetic Phenomena (Spring 2020), Philip C. Nelson

Department of Physics Papers

These course notes are made publicly available in the hope that they will be useful. All reports of errata will be gratefully received. I will also be glad to hear from anyone who reads them, whether or not you find errors: pcn@upenn.edu.


Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn E. Merrill, Bingjie Zhang, Jerry Larue May 2020

Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn E. Merrill, Bingjie Zhang, Jerry Larue

Student Scholar Symposium Abstracts and Posters

Catalysis provides pathways for efficient and selective chemical reactions through the lowering of energy barriers for desired products. Gold nanoparticles (AuNP) show excellent promise as plasmonic catalysts. Localized surface plasmon resonances are oscillations of the electron bath at the surface of a nanoparticle that generate energetically intense electric fields and rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize strongly bound oxygen atoms through occupation of accessible anti-bonding orbitals. Tuning the anti-bonding orbitals to make them accessible for occupancy will be achieved by coating the AuNP in a thin layer of another transition metal, such ...


Changes In The Scattering Phase Shifts For Partial Waves Of Ultracold Particles At Different Energies, Kaaviyan Faezi May 2020

Changes In The Scattering Phase Shifts For Partial Waves Of Ultracold Particles At Different Energies, Kaaviyan Faezi

Honors Scholar Theses

At low energies, scattering phase shifts, the difference in phases between the incoming and outgoing spherical waves in scattering, for different partial waves follow a similar pattern. The phase shift curves, which are a function of the angular momentum quantum number for different scattering energy, obtain resonances after reaching their maxima, and as energy is increased, these resonances become smaller and eventually disappear. Using numerical methods involving the use of Chebyshev polynomials, we solve the wave equation for a scattering potential to obtain the radial equation. From the radial equation we then find the scattering phase shift for a particular ...


Analytical Results For The Three-Body Radiative Attachment Rate Coefficient, With Application To The Positive Antihydrogen Ion H¯+, Jack C. Straton Apr 2020

Analytical Results For The Three-Body Radiative Attachment Rate Coefficient, With Application To The Positive Antihydrogen Ion H¯+, Jack C. Straton

Physics Faculty Publications and Presentations

To overcome the numerical difficulties inherent in the Maxwell–Boltzmann integral of the velocity-weighted cross section that gives the radiative attachment rate coefficient αRA for producing the negative hydrogen ion H or its antimatter equivalent, the positive antihydrogen ion H¯+ , we found the analytic form for this integral. This procedure is useful for temperatures below 700 K, the region for which the production of H¯+ has potential use as an intermediate stage in the cooling of antihydrogen to ultra-cold (sub-mK) temperatures for spectroscopic studies and probing the gravitational interaction of the anti-atom. Our results, utilizing a 50-term explicitly correlated exponential ...


The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang Apr 2020

The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang

Physics & Astronomy Faculty Publications

The breakup of a quantum liquid droplet is examined through a 4He cluster by removing the attractive tail in the interaction between some of the atoms in the system with the diffusion quantum Monte Carlo simulation. The ground-state energy, kinetic energy, cluster size, and density profile of the cluster are evaluated against the percentage of the atoms without the attractive tail. The condition for the cluster to lose its ability to form a quantum liquid droplet at zero temperature is found and analyzed. The cluster is no longer able to form a quantum liquid droplet when about two-thirds of pairs ...


Time Dependence Of Few-Body Forster Interactions Among Ultracold Rydberg Atoms, Zhimin Cheryl Liu, Nina P. Inman, Thomas J. Carroll, Michael W. Noel Mar 2020

Time Dependence Of Few-Body Forster Interactions Among Ultracold Rydberg Atoms, Zhimin Cheryl Liu, Nina P. Inman, Thomas J. Carroll, Michael W. Noel

Physics and Astronomy Faculty Publications

Rubidium Rydberg atoms in either |mj| sublevel of the 36p3/2 state can exchange energy via Stark-tuned Förster resonances, including two-, three-, and four-body dipole-dipole interactions. Three-body interactions of this type were first reported and categorized by Faoro et al. [Nat. Commun. 6, 8173 (2015)] and their Borromean nature was confirmed by Tretyakov et al. [Phys. Rev. Lett. 119, 173402 (2017)]. We report the time dependence of the N-body Förster resonance N×36p3/2,|mj|=1/2→36s1/2+37s1/2+(N−2)×36p3/2,|mj|=3/2 ...


Coherent Band-Edge Oscillations And Dynamic Longitudinal-Optical Phonon Mode Splitting As Evidence For Polarons In Perovskites, Zhaoyu Liu, Chirag Vaswani, Liang Luo, Di Cheng, X. Yang, Xin Zhao, Yongxin Yao, Z. Song, R. Brenes, R. J. H. Kim, J. Jean, V. Bulović, Y. Yan, Kai-Ming Ho, Jigang Wang Mar 2020

Coherent Band-Edge Oscillations And Dynamic Longitudinal-Optical Phonon Mode Splitting As Evidence For Polarons In Perovskites, Zhaoyu Liu, Chirag Vaswani, Liang Luo, Di Cheng, X. Yang, Xin Zhao, Yongxin Yao, Z. Song, R. Brenes, R. J. H. Kim, J. Jean, V. Bulović, Y. Yan, Kai-Ming Ho, Jigang Wang

Ames Laboratory Accepted Manuscripts

The coherence of collective modes, such as phonons and polarons, and their modulation of electronic states is long sought in complex systems, which is a crosscutting issue in photovoltaics and quantum electronics. In photovoltaic cells and lasers based on metal halide perovskites, the presence of polarons, i.e., photocarriers dressed by the macroscopic motion of charged lattice, assisted by terahertz (THz) longitudinal-optical (LO) phonons, has been intensely studied yet is still debated. This may be key for explaining the remarkable properties of the perovskite materials, e.g., defect tolerance, long charge lifetimes, and diffusion lengths. Here we use the intense ...


Characterization Of A Trochoidal Electron Monochromator, Jesse Kruse Mar 2020

Characterization Of A Trochoidal Electron Monochromator, Jesse Kruse

Honors Theses, University of Nebraska-Lincoln

This thesis presents a quantitative study of a trochoidal electron monochromator and attempts to observe the 2p^53p^2 resonance in neon. A detailed description of the experimental apparatus, including the electron beam system, the vacuum system, and the light analysis system, is presented first. Then, we discuss the theory of how the electron beam is monochromatized, how we measured monochomatization, and how we analyze the light being emitted from the collision cell. The light analysis system is capable of accurately measuring the relative Stokes parameters for any polarization of light, and the electron beam system is capable of producing ...


A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew Feb 2020

A Computationally-Efficient Bound For The Variance Of Measuring The Orientation Of Single Molecules, Tingting Wu, Tianben Ding, Hesam Mazidi, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Modulating the polarization of excitation light, resolving the polarization of emitted fluorescence, and point spread function (PSF) engineering have been widely leveraged for measuring the orientation of single molecules. Typically, the performance of these techniques is optimized and quantified using the Cramér-Rao bound (CRB), which describes the best possible measurement variance of an unbiased estimator. However, CRB is a local measure and requires exhaustive sampling across the measurement space to fully characterize measurement precision. We develop a global variance upper bound (VUB) for fast quantification and comparison of orientation measurement techniques. Our VUB tightly bounds the diagonal elements of the ...


Overview Of Trends In Indian Optics Research (2008 – 2018), Mallikarjun Kappi, Biradar B S Feb 2020

Overview Of Trends In Indian Optics Research (2008 – 2018), Mallikarjun Kappi, Biradar B S

Library Philosophy and Practice (e-journal)

The present study deals with the assessment of Indian optics research output as reflected in Web of Science (WOS) database for the period 2008 to 2018 for identifying the research output in the field of optics literature. It also provides a comparative evaluation and performance of different types of scientometric indicators, such as number of publications, number of citations and collaboration from India. The Indian optics research has increased exponentially over the last decade.


Characterizing Complexity In A Semiconductor With Optical Feedback From Two Mirrors, Layla M. Abrams Jan 2020

Characterizing Complexity In A Semiconductor With Optical Feedback From Two Mirrors, Layla M. Abrams

2020 Symposium Posters

Lasers are stable devices with a broad spectrum of applications. They can be perturbed to induce complex dynamics in their output intensity. One interesting regime in semiconductor lasers is that the output intensity of the laser emits a sequence of non-regular optical spikes. This behavior resembles that of neurons. We use a semiconductor laser with optical feedback from two mirrors to characterize the behavior of the laser's power output. The data is then analyzed by transforming the intensity time series into a sequence of patterns or words. By doing this we want to explore how the laser changes its ...


Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben Jan 2020

Detection Of Decoupled Surface And Bulk States In Epitaxial Orthorhombic Sriro3 Thin Films, Prescott E. Evans, Takashi Komesu, Le Zhang, Ding-Fu Shao, Andrew J. Yost, Shiv Kumar, Eike F. Schwier, Kenya Shimada, Evgeny Y. Tsymbal, Xia Hong, P. A. Dowben

Peter Dowben Publications

We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001) having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from ...


Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman Jan 2020

Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman

Faculty Publications from Nebraska Center for Materials and Nanoscience

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention.

Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single photon emission ...


Attosecond Electron Bunch Measurement With Coherent Nonlinear Thomson Scattering, Colton Fruhling, Gregory V. Golovin, Donald Umstadter Jan 2020

Attosecond Electron Bunch Measurement With Coherent Nonlinear Thomson Scattering, Colton Fruhling, Gregory V. Golovin, Donald Umstadter

Donald Umstadter Publications

We present a novel method for measurement of ultrashort electron-bunch duration, in principle, as short as zeptosecond (10−21 s). The method employs nonlinear Thomson scattering of relativistically intense laser light, and takes advantage of the nonlinear dependence and coherence of scattered light on electron bunch length. We validate the method and test its range of applicability via simulations by using realistic (nonideal) electron beams. Due to the wide flexibility in choice of interaction geometry and scattering laser pulse properties enabled by the method, it is shown to be applicable over a wide range of electron beam parameters, including energy ...


Spectroscopic Study On Pseudomonas Aeruginosa Biofilm In The Presence Of The Aptamer-Dna Scaffolded Silver Nanoclusters, Bidisha Sengupta, Prakash Adhikari, Esther Mallet, Ronald Havner, Prabhakar Pradhan Jan 2020

Spectroscopic Study On Pseudomonas Aeruginosa Biofilm In The Presence Of The Aptamer-Dna Scaffolded Silver Nanoclusters, Bidisha Sengupta, Prakash Adhikari, Esther Mallet, Ronald Havner, Prabhakar Pradhan

Faculty Publications

We report the effectiveness of silver nanocluster (Ag-NC) against the biofilm of Pseudomonas aeruginosa (PA). Two DNA aptamers specific for PA and part of their sequences were chosen as templates for growing the Ag-NC. While circular dichroism (CD) studies determined the presence of secondary structures, UV/Vis absorption, and fluorescence spectroscopic studies confirmed the formation of the fluorescent Ag-NC on the DNA templates. Furthermore, mesoscopic physics-based partial wave spectroscopy (PWS) was used to analyze the backscattered light signal that can detect the degree of nanoscale mass density/refractive index fluctuations to identify the biofilm formation, comparatively among the different aptamers ...


Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li Jan 2020

Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li

Faculty Publications from Nebraska Center for Materials and Nanoscience

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software ...


Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer Jan 2020

Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer

Faculty Publications from Nebraska Center for Materials and Nanoscience

Magnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order. Here, we use nonequilibrium processing to produce B20-ordered Co1+xSi1−x with a maximum Co solubility of x = 0.043. Above ...


Predicting Densities And Elastic Moduli Of Sio2-Based Glasses By Machine Learning, Yong-Jie Hu, Ge Zhao, Mingfei Zhang, Bin Bin, Tyler Del Rose, Qian Zhao, Qan Zu, Yang Chen, Xuekun Sun, Maarten De Jong, Multiple Additional Authors Jan 2020

Predicting Densities And Elastic Moduli Of Sio2-Based Glasses By Machine Learning, Yong-Jie Hu, Ge Zhao, Mingfei Zhang, Bin Bin, Tyler Del Rose, Qian Zhao, Qan Zu, Yang Chen, Xuekun Sun, Maarten De Jong, Multiple Additional Authors

Mathematics and Statistics Faculty Publications and Presentations

Chemical design of SiO2-based glasses with high elastic moduli and low weight is of great interest. However, it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic bonds and their ordering at different length scales. Here we show that the densities and elastic moduli of SiO2-based glasses can be efficiently predicted by machine learning (ML) techniques across a complex compositional space with multiple (>10) types of additive oxides besides SiO2. Our machine learning approach relies on a training set generated ...


Optical-Depth Scaling Of Light Scattering From A Dense And Cold Atomic 87Rb Gas, K. J. Kemp, S. J. Roof, M. D. Havey, I. M. Sokolov, D. V. Kupriyanov, W. Guerin Jan 2020

Optical-Depth Scaling Of Light Scattering From A Dense And Cold Atomic 87Rb Gas, K. J. Kemp, S. J. Roof, M. D. Havey, I. M. Sokolov, D. V. Kupriyanov, W. Guerin

Physics Faculty Publications

We report investigation of near-resonance light scattering from a cold and dense atomic gas of 87Rb atoms. Measurements are made for probe frequencies tuned near the F=2→ F'=3 nearly closed hyperfine transition, with particular attention paid to the dependence of the scattered light intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size. We find that, over a wide range of experimental variables, the optical depth of the atomic sample serves as an effective single scaling parameter which describes well all the experimental data.


Measurement Of The Single-Spin Asymmetry A⁰ʸ In Quasi-Elastic ³He↑(E,E'N) Scattering At 0.4 < Q2 < 1.0 Gev/C2, E. Long, Y.W. Zhang, M. Mihovilovic, M. Canan, S. Golge, L. Zhu Jan 2020

Measurement Of The Single-Spin Asymmetry A⁰ʸ In Quasi-Elastic ³He↑(E,E'N) Scattering At 0.4 2 2, E. Long, Y.W. Zhang, M. Mihovilovic, M. Canan, S. Golge, L. Zhu

Physics Faculty Publications

Due to the lack of free neutron targets, studies of the structure of the neutron are typically made by scattering electrons from either ²H or ³He targets. In order to extract useful neutron information from a ³He target, one must understand how the neutron in a ³He system differs from a free neutron by taking into account nuclear effects such as final state interactions and meson exchange currents. The target single spin asymmetry A⁰ʸ is an ideal probe of such effects, as any deviation from zero indicates effects beyond plane wave impulse approximation. New measurements of the target single spin ...


Polarization In The Production Of The Antihydrogen Ion, Casey A. Yazejian, Jack C. Straton Jan 2020

Polarization In The Production Of The Antihydrogen Ion, Casey A. Yazejian, Jack C. Straton

Physics Faculty Publications and Presentations

We provide estimates of both the cross section and rate coefficient for the radiative attachment of a second positron to create the H̅+ ion, H̅(1s)+e+→H̅+(1s2 1Se)+ℏω, for which the polarization of the initial state H̅(1s) is taken into account. We show how to analytically integrate the resulting six-dimensional, three-body integrals for wave functions composed of explicitly correlated exponentials, a result that may be extended to Hylleraas wave functions. We extend Bhatia’s polarization results for the equivalent matter problem down to the low temperatures required for the Gravitational ...


Enhancing Final Image Contrast In Off-Axis Digital Holography Using Residual Fringes, Manuel Bedrossian, Kent Wallace, Eugene Serabyn, Chris Lindensmith, Jay Nadeau Jan 2020

Enhancing Final Image Contrast In Off-Axis Digital Holography Using Residual Fringes, Manuel Bedrossian, Kent Wallace, Eugene Serabyn, Chris Lindensmith, Jay Nadeau

Physics Faculty Publications and Presentations

We show that background fringe-pattern subtraction is a useful technique for removing static noise from off-axis holographic reconstructions and can enhance image contrast in volumetric reconstructions by an order of magnitude in the case for instruments with relatively stable fringes. We demonstrate the fundamental principle of this technique and introduce some practical considerations that must be made when implementing this scheme, such as quantifying fringe stability. This work also shows an experimental verification of the background fringe subtraction scheme using various biological samples.


Global Research Productivity In Nuclear Waste Management: A Scientometric Analysis, Fayaz Ahmad Loan, Ufaira Yaseen Jan 2020

Global Research Productivity In Nuclear Waste Management: A Scientometric Analysis, Fayaz Ahmad Loan, Ufaira Yaseen

Library Philosophy and Practice (e-journal)

Scientometrics has emerged as one of the prominent and fast-growing fields in the Library and Information Sciences. The present study also deals with the scientometric aspect of one of the prominent fields of Nuclear Science and Technology i.e. Nuclear Waste Management. The data for the said study has been collected from the Web of Science database over the period 1989-2019. The results reveal that a total of 1824 publications have been published on Nuclear Waste Management and the highest number has been contributed by the USA (23.7%) of the total global output. Most of the Nuclear Waste Management ...


Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Nov 2019

Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Publications

Diamond is the quintessential superhard material widely known for its stiff and brittle nature and large electronic band gap. In stark contrast to these established benchmarks, our first-principles studies unveil surprising intrinsic structural ductility and electronic conductivity in diamond under coexisting large shear and compressive strains. These complex loading conditions impede brittle fracture modes and promote atomistic ductility, triggering rare smooth plastic flow in the normally rigid diamond crystal. This extraordinary structural change induces a concomitant band gap closure, enabling smooth charge flow in deformation created conducting channels. These startling soft-and-conducting modes reveal unprecedented fundamental characteristics of diamond, with profound ...


Obituary: Anthony Starace (1945-2019) Sep 2019

Obituary: Anthony Starace (1945-2019)

Anthony F. Starace Publications

Anthony Starace, George Holmes University Professor of physics, died Sept. 5 from complications related to pancreatitis. He was 74.

Starace was born July 24, 1945, in the Queens borough of New York City. He graduated from Stuyvesant High School and earned his bachelor’s degree from Columbia University in 1966 before moving west to the University of Chicago, where he earned his doctorate under adviser Ugo Fano in 1971. It was in Chicago that he met Katherine Fritz of Beatrice, Nebraska, his wife of 51 years.

Following a postdoctoral appointment at Imperial College London, Starace moved to Lincoln as an ...


Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu Sep 2019

Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu

Physics & Astronomy Faculty Publications

We revisit the Internal-Collision-induced MAgnetic Reconnection and Turbulence model of gamma-ray bursts (GRBs) in view of the advances made in understanding of both relativistic magnetic turbulence and relativistic turbulent magnetic reconnection. We identify the kink instability as the most natural way of changing the magnetic configuration to release the magnetic free energy through magnetic reconnection, as well as driving turbulence that enables fast turbulent reconnection. We show that this double role of the kink instability is important for explaining the prompt emission of GRBs. Our study confirms the critical role that turbulence plays in boosting reconnection efficiency in GRBs and ...


Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Aug 2019

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In the original paper, a calibration error exists in the image-formation model used to analyze experimental images taken by our microscope, causing a bias in the orientation measurements in Figs. 2 and 3. The updated measurements are shown in Fig. E1. We have also updated the supplementary material for the original article to discuss the revised PSF model and estimation algorithms (supplementary material 2) and show the revised model and measurements (Figs. S1, S3, S7, S8, and S10–S13).