Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Journal

2017

Discipline
Institution
Keyword
Publication

Articles 31 - 60 of 131

Full-Text Articles in Physics

Characterizing The Design Space Of Oscillatory Biological Networks, Leanne Lunsford, Denise Stephens, Eric Hintz Jun 2017

Characterizing The Design Space Of Oscillatory Biological Networks, Leanne Lunsford, Denise Stephens, Eric Hintz

Journal of Undergraduate Research

Characterizing the relevant parameters of a design space in order to satisfy a specific behavior criterion is an important problem throughout all of science and engineering. In this project we proposed to apply model reduction to the case of biological oscillations involving Michaelis-Menten reactions. By removing irrelevant parameters from a fully connected network we were able to reduce a known problem in systems biology to a more general model. Furthermore, significant progress has been made in applying Manifold Boundary Approximation Method (MBAM) to oscillatory models in systems biology.


Searching For Signals Of Dark Matter Decay, Gardner R. Marshall, William Hester Jun 2017

Searching For Signals Of Dark Matter Decay, Gardner R. Marshall, William Hester

Journal of the South Carolina Academy of Science

Dark matter is believed to make up approximately eighty-three percent of the matter in the universe. Despite its apparent abundance, it has not yet been directly detected, and it is not known what types of particles it is composed of. Efforts to understand what dark matter is made of and how it fits into the Standard Model of particle physics is currently an important and active area of research. In this paper we investigate a method of studying dark matter indirectly by using terrestrial neutrino telescopes to search for signs of dark matter decay. In particular, we study leptonically decaying …


Mathematical Modelling Of Stoneley Wave In A Transversely Isotropic Thermoelastic Media, Rajneesh Kumar, Nidhi Sharma, Parveen Lata, S. M. Abo-Dahab Jun 2017

Mathematical Modelling Of Stoneley Wave In A Transversely Isotropic Thermoelastic Media, Rajneesh Kumar, Nidhi Sharma, Parveen Lata, S. M. Abo-Dahab

Applications and Applied Mathematics: An International Journal (AAM)

This paper is concerned with the study of propagation of Stoneley waves at the interface of two dissimilar transversely isotropic thermoelastic solids without energy dissipation and with two temperatures. The secular equation of Stoneley waves is derived in the form of the determinant by using appropriate boundary conditions i.e. the stresses components, the displacement components, and temperature at the boundary surface between the two media are considered to be continuous at all times and positions . The dispersion curves giving the Stoneley wave velocity and Attenuation coefficients with wave number are computed numerically. Numerical simulated results are depicted graphically to …


Thermal Stress Analysis In A Functionally Graded Hollow Elliptic-Cylinder Subjected To Uniform Temperature Distribution, V. R. Manthena, N. K. Lamba, G. D. Kedar Jun 2017

Thermal Stress Analysis In A Functionally Graded Hollow Elliptic-Cylinder Subjected To Uniform Temperature Distribution, V. R. Manthena, N. K. Lamba, G. D. Kedar

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, an analytical method of a thermoelastic problem for a medium with functionally graded material properties is developed in a theoretical manner for the elliptic-cylindrical coordinate system under the assumption that the material properties except for Poisson’s ratio and density are assumed to vary arbitrarily with the exponential law in the radial direction. An attempt has been made to reconsider the fundamental system of equations for functionally graded solids in a two-dimensional state under thermal and mechanical loads. The general solution of displacement formulation is obtained by the introduction of appropriate transformation and carried out the analysis by …


Numerical Solution Of Fractional Integro-Differential Equations With Nonlocal Conditions, M. Jani, D. Bhatta, S. Javadi Jun 2017

Numerical Solution Of Fractional Integro-Differential Equations With Nonlocal Conditions, M. Jani, D. Bhatta, S. Javadi

Applications and Applied Mathematics: An International Journal (AAM)

In this paper, we present a numerical method for solving fractional integro-differential equations with nonlocal boundary conditions using Bernstein polynomials. Some theoretical considerations regarding fractional order derivatives of Bernstein polynomials are discussed. The error analysis is carried out and supported with some numerical examples. It is shown that the method is simple and accurate for the given problem.


Effect Of Damping And Thermal Gradient On Vibrations Of Orthotropic Rectangular Plate Of Variable Thickness, U. S. Rana, Robin Robin Jun 2017

Effect Of Damping And Thermal Gradient On Vibrations Of Orthotropic Rectangular Plate Of Variable Thickness, U. S. Rana, Robin Robin

Applications and Applied Mathematics: An International Journal (AAM)

In this present paper, damped vibrations of an orthotropic rectangular plate resting on elastic foundation with thermal gradient is modeled, considering variable thickness of plate. Following Le`vy approach, the governed equation of motion is solved numerically using quintic spline technique with clamped and simply supported edges. The effect of damping parameter and thermal gradient together with taper constant, density parameter and elastic foundation parameter on the natural frequencies of vibration for the first three modes of vibration are depicted through Tables and Figures, and mode shapes have been computed for fixed value of plate parameter. It has been observed that …


Analysis Of Heat And Mass Transfer Of An Inclined Magnetic Field Pressure-Driven Flow Past A Permeable Plate, M. S. Dada, S. O. Salawu Jun 2017

Analysis Of Heat And Mass Transfer Of An Inclined Magnetic Field Pressure-Driven Flow Past A Permeable Plate, M. S. Dada, S. O. Salawu

Applications and Applied Mathematics: An International Journal (AAM)

The study considers heat and mass transfer of magnetohydrodynamics pressure-driven flow passed a stretching permeable surface in the presence of inclined uniform magnetic field. The equations governing the model are transformed by Lie’s group and solved using weighted residual method. The results obtained are compared with that of fourth order Runge-Kutta method that show the effects of Skin friction, Nusselt and Sherwood numbers on the flow. Finally, the influence of some important parameters on the flow are presented graphically and discussed.


Hematocrit Level On Blood Flow Through A Stenosed Artery With Permeable Wall: A Theoretical Study, A. Malek, A. Hoque Jun 2017

Hematocrit Level On Blood Flow Through A Stenosed Artery With Permeable Wall: A Theoretical Study, A. Malek, A. Hoque

Applications and Applied Mathematics: An International Journal (AAM)

The paper deals with the hematocrit level on resistance of flow, wall shear stress in a stenosed artery of permeable wall. In the paper we have developed and solved some theoretical formulas based on stenosis and hematocrit effects. The results highlight that the resistance of flow increases for increasing of stenosis height where the hematocrit level (35%-45%) has significant effects. Moreover, the effects of slip parameter and Darcy number due to permeability of the wall on resistance of flow have been investigated. The effects of hematocrit level, slip parameter and Darcy number have been focused on wall shear stress of …


Effect Of Buoyancy And Magnetic Field On Unsteady Convective Diusion Of Solute In A Boussinesq Stokes Suspension Bounded By Porous Beds, Nirmala P. Ratchagar, R. Vijayakumar Jun 2017

Effect Of Buoyancy And Magnetic Field On Unsteady Convective Diusion Of Solute In A Boussinesq Stokes Suspension Bounded By Porous Beds, Nirmala P. Ratchagar, R. Vijayakumar

Applications and Applied Mathematics: An International Journal (AAM)

Hydromagnetic free and forced convection in a parallel plate channel bounded by porous bed and transverse magnetic field has been considered. When there is a uniform axial temperature variation along the walls, the primary flow shows incipient flow reversal at the upper plate for an increase in temperature along that plate. Similarly flow reversal at the lower plate occurs with a decrease in temperature along that plate. The magnetic field, arising as a body couple in the governing equations is shown to increase the axis dispersion coefficient. The effect of various physical parameters such as Hartmann number, Grashof number, porous …


Damping In Microscale Modified Couple Stress Thermoelastic Circular Kirchhoff Plate Resonators, Rajneesh Kumar, Shaloo Devi, Veena Sharma Jun 2017

Damping In Microscale Modified Couple Stress Thermoelastic Circular Kirchhoff Plate Resonators, Rajneesh Kumar, Shaloo Devi, Veena Sharma

Applications and Applied Mathematics: An International Journal (AAM)

The vibrations of circular plate in modified couple stress thermoelastic medium using Kirchhoff- Love plate theory has been presented. The basic equations of motion and heat conduction equation for Lord Shulman (L-S, 1967) theory are written with the help of Kirchhoff-Love plate theory. The thermoelastic damping of micro beam resonators is studied by applying normal mode analysis method. The solutions for the free vibrations of plates under clamped, simply supported and free boundary conditions are obtained. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized couple stress thermoelastic and coupled thermoelastic plates. Numerical results …


Effect Of Nonlinear Thermal Radiation On Mhd Chemically Reacting Maxwell Fluid Flow Past A Linearly Stretching Sheet, A. M. Ramireddy, J. V. Ramana Reddy, N. Sandeep, V. Sugunamma Jun 2017

Effect Of Nonlinear Thermal Radiation On Mhd Chemically Reacting Maxwell Fluid Flow Past A Linearly Stretching Sheet, A. M. Ramireddy, J. V. Ramana Reddy, N. Sandeep, V. Sugunamma

Applications and Applied Mathematics: An International Journal (AAM)

This communication addresses the influence of nonlinear thermal radiation on magneto hydrodynamic Maxwell fluid flow past a linearly stretching surface with heat and mass transfer. The effects of heat generation/absorption and chemical reaction are taken into account. At first, we converted the governing partial differential equations into nonlinear ordinary differential equations with the help of suitable similarity transformations and solved by using Runge-Kutta based shooting technique. Further, the effects of various physical parameters on velocity, temperature and concentration fields were discussed thoroughly with the help of graphs obtained by using bvp5c MATLAB package. In view of many engineering applications we …


New Structure For Exact Solutions Of Nonlinear Time Fractional Sharma-Tasso-Olver Equation Via Conformable Fractional Derivative, Hadi Rezazadeh, Farid S. Khodadad, Jalil Manafian Jun 2017

New Structure For Exact Solutions Of Nonlinear Time Fractional Sharma-Tasso-Olver Equation Via Conformable Fractional Derivative, Hadi Rezazadeh, Farid S. Khodadad, Jalil Manafian

Applications and Applied Mathematics: An International Journal (AAM)

In this paper new fractional derivative and direct algebraic method are used to construct exact solutions of the nonlinear time fractional Sharma-Tasso-Olver equation. As a result, three families of exact analytical solutions are obtained. The results reveal that the proposed method is very effective and simple for obtaining approximate solutions of nonlinear fractional partial differential equations.


Stability Of Triangular Libration Points In The Sun - Jupiter System Under Szebehely’S Criterion, M. R. Hassan, Md. A. Hassan, M. Z. Ali Jun 2017

Stability Of Triangular Libration Points In The Sun - Jupiter System Under Szebehely’S Criterion, M. R. Hassan, Md. A. Hassan, M. Z. Ali

Applications and Applied Mathematics: An International Journal (AAM)

In the present study, the classical fourth-order Runge-Kutta method with seventh-order automatic step-size control has been carried out to examine the stability of triangular libration points in the Sun-Jupiter system. The Sun is a highly luminous body and Jupiter is a highly spinning body, so radiation pressure of the Sun and oblateness of the Jupiter cannot be neglected. These factors must have some effects on the motion of the infinitesimal mass (spacecraft) and consequent effects on the stability of the triangular libration points. It is to be noted that in our problem, infinitesimal mass exerts no influence of attraction on …


Numerical Simulation Of The Phase Space Of Jupiter-Europa System Including The Effect Of Oblateness, Vinay Kumar, Beena R. Gupta, Rajiv Aggarwal Jun 2017

Numerical Simulation Of The Phase Space Of Jupiter-Europa System Including The Effect Of Oblateness, Vinay Kumar, Beena R. Gupta, Rajiv Aggarwal

Applications and Applied Mathematics: An International Journal (AAM)

We have numerically investigated the phase space of the Jupiter-Europa system in the framework of a Circular Restricted Three-Body Problem. In our model, Jupiter is taken as oblate primary. We have considered time-frequency analysis (TFA) based on wavelets and the Poincare Surface of Section (PSS) for the characterization of orbits in the Jupiter-Europa model. We have exploited both cases: a system with and without considering the effect of oblateness. Graphs (ridge-plots) explaining the phenomenon of resonance trapping, a difference between chaotic sticky orbit and the non-sticky orbit, and periodic and quasi-periodic orbit are presented. Our results of Poincare surfaces of …


Asymptotic Behavior Of Waves In A Nonuniform Medium, Nezam Iraniparast, Lan Nguyen, Mikhail Khenner Jun 2017

Asymptotic Behavior Of Waves In A Nonuniform Medium, Nezam Iraniparast, Lan Nguyen, Mikhail Khenner

Applications and Applied Mathematics: An International Journal (AAM)

An incoming wave on an infinite string, that has uniform density except for one or two jump discontinuities, splits into transmitted and reflected waves. These waves can explicitly be described in terms of the incoming wave with changes in the amplitude and speed. But when a string or membrane has continuous inhomogeneity in a finite region the waves can only be approximated or described asymptotically. Here, we study the cases of monochromatic waves along a nonuniform density string and plane waves along a membrane with nonuniform density. In both cases the speed of the physical system is assumed to tend …


Two-Dimensional Model Of Nanoparticle Deposition In The Alveolar Ducts Of The Human Lung, Anju Saini, V. K. Katiyar, Pratibha Pratibha Jun 2017

Two-Dimensional Model Of Nanoparticle Deposition In The Alveolar Ducts Of The Human Lung, Anju Saini, V. K. Katiyar, Pratibha Pratibha

Applications and Applied Mathematics: An International Journal (AAM)

In this paper a mathematical model for nanoparticle deposition in the alveolar ducts of the human lung airways is proposed. There were huge inconsistencies in deposition between ducts of a particular generation and inside every alveolated duct, signifying that limited particle concentrations can be much bigger than the mean acinar concentration. A large number of particles are unsuccessful to way out the structure during expiration. Finite difference method has been used to solve the unsteady nonlinear Navier–Stokes equations in cylindrical coordinate system governing flow assuming axial symmetry under laminar flow condition so that the problem efficiently turns into two-dimensional. An …


Physical Principles Governing Colloidal Particle Deposition At Low Reynold’S Number: Applications To Microbial Biofilms, Sophia Wiedmann May 2017

Physical Principles Governing Colloidal Particle Deposition At Low Reynold’S Number: Applications To Microbial Biofilms, Sophia Wiedmann

Macalester Journal of Physics and Astronomy

Biofilms formed from the adhesion of microbes to a surface hold great relevance to public health and wastewater management. However, the physical principles underlying the attachment stage of biofilm formation, when individual microbes first come into contact with a substrate, are not well understood. Here I report on a model of colloidal particle attachment to a surface that incorporates the effects of diffusion, advection, gravity, and the hydrodynamic lift and drag forces experienced by polystyrene beads at low Reynold’s number. The simulation predicts attachment rates of 1.04x10^(-8)m/s, 0.73x10^(-8)m/s, and 1.29x10^(-8)m/s for beads of radius 0.25 µm, 0.55 µm, and 0.90 …


Time-Resolved Thz Conductivity Of An Intermediate Band Semiconductor, Elliot Weiss May 2017

Time-Resolved Thz Conductivity Of An Intermediate Band Semiconductor, Elliot Weiss

Macalester Journal of Physics and Astronomy

Intermediate band materials have promising applications as affordable, highly efficient solar materials. However, intermediate band solar cells exhibit low efficiency to date. Carrier recombination is a critical process that limits efficiency. If electrons relax to the valence band before they can be collected, their energy is lost. To help understand the recombination dynamics and physical properties of intermediate band semiconductors, we obtain time-resolved THz conductivity measurements of the intermediate band semiconductor, GaPAsN, at various temperatures. From our results, we build a model that provides insight to the recombination dynamics of GaPAsN.


Almost Dark Galaxies: The Search For Optical Counterparts, Quinton O. Singer May 2017

Almost Dark Galaxies: The Search For Optical Counterparts, Quinton O. Singer

Macalester Journal of Physics and Astronomy

Presented in this paper are results from neutral hydrogen (HI) imaging and analysis of the "Almost Dark" galaxies AGC 219533, AGC 227982, and AGC 268363 using new, higher resolution observations from the Very Large Array (VLA). Selected from the ALFALFA survey, "Almost Dark" galaxies possess significant HI reservoirs but, when the HI data is compared to survey-depth ground-based optical imaging, their optical stellar counterparts have extremely low surface brightnesses. AGC 219533 is one such object. The other two sources, AGC 227982 and AGC 26833, were candidate dark galaxies, as no stellar counterpart was identified in initial ALFALFA optical matching, and …


Intervalley Scattering Rates In Tellurium Observed Via Time-Resolved Terahertz Spectroscopy, Joshua R. Rollag May 2017

Intervalley Scattering Rates In Tellurium Observed Via Time-Resolved Terahertz Spectroscopy, Joshua R. Rollag

Macalester Journal of Physics and Astronomy

We conducted time-resolved terahertz spectroscopy measurements on the elemental semiconductor tellurium. Pump-probe measurements were used to find the conductivity as a function of time in single crystalline tellurium samples. It was found that the excitation dynamics in tellurium changes for photon energies of 1.03 eV and 1.55 eV. The change in these excitation dynamics was attributed to intervalley scattering effects. A model using intervalley scattering and Auger recombination was fit to the data, giving a value of 2.28 ps for the intervalley scattering time constant in tellurium.


The Chiral Magnetic Effect In Heavy Ion Collisions From Hydrodynamic Simulations, Elias Lilleskov May 2017

The Chiral Magnetic Effect In Heavy Ion Collisions From Hydrodynamic Simulations, Elias Lilleskov

Macalester Journal of Physics and Astronomy

The quark-gluon plasma created in heavy ion collisions is an exotic state of matter in which many unusual phenomena are manifested. One such phenomenon is the "Chiral-Magnetic Effect" (CME), wherein the powerful magnetic fields generated by colliding ions spin-polarize chiral quarks, causing a net transport effect in the direction of the fields. The CME predicts specific charge-dependent correlation observables, for which experimental evidence was reported, although the evidence is subject to background contamination. Isobaric collision experiments have been planned for 2018 at RHIC, which will study this effect by comparing 96Ru-96Ru and 96Zr-96Zr collisions. The two colliding systems are expected …


Conductivity Measurements Of A Thermoelectric Nanomaterial Through Thz Spectroscopy, Michaela S. Koller, James Heyman, Gunnar Footh May 2017

Conductivity Measurements Of A Thermoelectric Nanomaterial Through Thz Spectroscopy, Michaela S. Koller, James Heyman, Gunnar Footh

Macalester Journal of Physics and Astronomy

In today’s society there is a great demand on energy output—in the United States alone we rely heavily on non-renewable energy sources. Thermoelectric materials may be able to be used to create more efficient energy systems or recover wasted heat from inefficient technologies. This paper focuses on the conductivity of a new thermoelectric material that incorporates copper into a tellurium nanowire PEDOT:PSS material. The addition of copper seems to increase the conductivity of the material, although the exact relationship between the percentage of copper to tellurium and its affect on the conductivity is uncertain from the results.


Transient Photoconductivity Of A Thermoelectric Nanomaterial Pedot:Pss With Tecu Nanowires, Gunnar J. Footh, Michaela S. Koller, James Heyman May 2017

Transient Photoconductivity Of A Thermoelectric Nanomaterial Pedot:Pss With Tecu Nanowires, Gunnar J. Footh, Michaela S. Koller, James Heyman

Macalester Journal of Physics and Astronomy

Thermoelectric materials are able to transfer heat energy into electrical energy. They have many important applications, and an increased understanding of them would allow the scientific community to develop more efficient thermoelectrics. We provide here transient photoconductivity measurements of a thermoelectric nanomaterial - PEDOT:PSS with TeCu nanowires on quartz substrate. Increased copper concentration in nanowires decreases photoconductivity in both transmission and reflectance measurements. Fermi blocking provides a reasonable explanation for this decrease in photoconductivity, which occurs when total nanowire mass approaches ~15% copper concentration.


A Direct Comparison Of Lyman-Alpha And Neutral Hydrogen Morphologies, Kathleen Fitzgibbon, John M. Cannon May 2017

A Direct Comparison Of Lyman-Alpha And Neutral Hydrogen Morphologies, Kathleen Fitzgibbon, John M. Cannon

Macalester Journal of Physics and Astronomy

The Lyman-Alpha Reference Sample (LARS) and its extension (eLARS) represent an exhaustive campaign to reverse-engineer galaxies. The main goal is to understand how \lya radiation is transported within galaxies: what fraction of it escapes, and what physical properties affect the \lya morphology and radiative transport (e.g., dust and gas content, metallicity, kinematics, properties of the producing and underlying stellar populations). Two galaxies from the sample, LARS02 and LARS09, were observed using the B and C configurations of the Very Large Array to examine the neutral hydrogen emission, which can be used to determine a galaxy's neutral hydrogen (HI) structure and …


Table Of Contents Apr 2017

Table Of Contents

Journal of the South Carolina Academy of Science

No abstract provided.


Antitumor Activity Of Selected Derivatives Of Pyrazole- Benzenesulfonamides From Dilithiated C(Α), N-Phenylhydrazones And Lithiated Methyl 2-(Aminosulfonyl)Benzoate, N. Dwight Camper [Deceased], James M. Gum, Darby E. Lyles, William T. Pennington, Charles F. Beam, Clyde R. Metz Apr 2017

Antitumor Activity Of Selected Derivatives Of Pyrazole- Benzenesulfonamides From Dilithiated C(Α), N-Phenylhydrazones And Lithiated Methyl 2-(Aminosulfonyl)Benzoate, N. Dwight Camper [Deceased], James M. Gum, Darby E. Lyles, William T. Pennington, Charles F. Beam, Clyde R. Metz

Journal of the South Carolina Academy of Science

Several pyrazole-benzenesulfonamides were subjected to biological evaluation involving tumor formation on potato discs caused by Agrobacterium tumefaciens. This assay led to some excellent and promising initial results with three of the pyrazole compounds showing increased tumor inhibition when compared to a recognized standard, camptothecin. The select pyrazole-benzenesulfonamides were prepared by condensation-cyclization of several dilithiated C(α),N-phenylhydrazones with lithiated methyl 2-aminosulfonyl-benzoate.


Fabrication Of Dye Sensitized Solar Cells Using Native And Non-Native Nanocrystals In Ferritin As The Dye, Alessandro Perego, John Colton Mar 2017

Fabrication Of Dye Sensitized Solar Cells Using Native And Non-Native Nanocrystals In Ferritin As The Dye, Alessandro Perego, John Colton

Journal of Undergraduate Research

Dye-sensitized solar cells (DSSCs) present a valuable and sustainable alternative to silicon solar cells. These cells present numerous advantages compered to inorganic photovoltaic systems, such as ability of absorb more sunlight per surface area than standard silicon-based solar panels, DSSCs are also able to work even in low-light conditions such as non-direct sunlight and cloudy skies. Finally, they are economical, easy to manufacture and constructed from abundant and stable resource materials. This makes DSSCs an attractive replacement for current photovoltaic technology. Ferritin (FTN) is a 12 nm diameter spherical protein with an 8 nm hollow interior, which naturally contains iron …


Study Of Influence Of Mobile Phone Irradiation To Tooth Enamel Epr Spectra, K. Sh. Zhumadilov, A. I. Ivannikov, V. F. Stepanenko, M. Hoshi Mar 2017

Study Of Influence Of Mobile Phone Irradiation To Tooth Enamel Epr Spectra, K. Sh. Zhumadilov, A. I. Ivannikov, V. F. Stepanenko, M. Hoshi

Eurasian Journal of Physics and Functional Materials

The contribution of mobile phones influence on electron spin resonance (EPR) spectra formation and electromagnetic noise signal for accuracy of dose estimation on example of tooth enamel samples measurements was investigated for low dose range. The spectra of irradiated tooth enamel samples in doses from 0 to 500 mGy have been measured. The spectra have been processed by mathematical fitting of model spectrum by least square methods. Standard deviation from nominal doses and uncertainty of dose estimation were determined. The noise level has been estimated in spectra by rest sum after model spectra fitting. Enamel samples were measured in 3 …


Discovery Of Elements 113 - 118, V. Utyonkov, Yu. Ts. Oganessian, S. N. Dmitriev, M. G. Itkis, K. J. Moody, M. Stoyer, D. Shaughnessy, J. B. Roberto, K. Rykaczewski, J. H. Hamilton Mar 2017

Discovery Of Elements 113 - 118, V. Utyonkov, Yu. Ts. Oganessian, S. N. Dmitriev, M. G. Itkis, K. J. Moody, M. Stoyer, D. Shaughnessy, J. B. Roberto, K. Rykaczewski, J. H. Hamilton

Eurasian Journal of Physics and Functional Materials

Review of discovery and investigation of isotopes of elements 113-118 produced in the reactions of48Ca with target nuclei238U-249Cf is presented. The synthesis of the heaviest nuclei, their summary decay properties, and methods of identification are discussed. The radioactive properties of the new nuclei give evidence of the significant increase of the stability of the heavy nuclei with rise of their neutron number and approaching magic number N=184.


Study Of Enhancement Of Total Cross Sections Of Reactions With 6 He, 6,9 Li Nuclei, Yu. E. Penionzhkevich, Yu. G. Sobolev, V. V. Samarin, M. A. Naumenko Mar 2017

Study Of Enhancement Of Total Cross Sections Of Reactions With 6 He, 6,9 Li Nuclei, Yu. E. Penionzhkevich, Yu. G. Sobolev, V. V. Samarin, M. A. Naumenko

Eurasian Journal of Physics and Functional Materials

The energy dependence of total cross sections of reactions6He + Si and6,9Li + Si in the beam energy range 5-30 MeV/nucleon has been measured. An agreement with the published experimental data for the reaction 6 He + Si was obtained. For the reaction9Li + Si new data in the vicinity a local enhancement of the total cross section was obtained. Theoretical analysis of possible reasons of appearance of this peculiarity in the collisions of nuclei6He and9Li with Si nuclei has been carried out including the influence of external neutrons of …