Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Impendance Probe Payload Development For Space-Based Joint Service Collaboration, Brian T. Kay Mar 2021

Impendance Probe Payload Development For Space-Based Joint Service Collaboration, Brian T. Kay

Theses and Dissertations

Collaborations utilizing small spacecraft in near earth orbit between the U. S. Coast Guard Academy (CGA), Naval Research Lab (NRL), the U. S. Naval Academy (USNA), and the Air Force Institute of Technology (AFIT) have initiated scientific and engineering space-based experiments. Sourced opportunities like the VaSpace ThinSat missions have provided a platform for payload, sensor, and experiment development that would have otherwise been resource prohibitive. We have constructed an impedance probe payload derived from the existing ‘Space PlasmA Diagnostic suitE’ (SPADE) mission operating from NASA’s International Space Station. Currently both space and laboratory plasmas are investigated with AC impedance measurements …


A Comparison Of Sporadic-E Occurrence Rates Using Ionosondes And Gps Radio Occultation Measurements, Rodney A. Carmona Jr. Mar 2021

A Comparison Of Sporadic-E Occurrence Rates Using Ionosondes And Gps Radio Occultation Measurements, Rodney A. Carmona Jr.

Theses and Dissertations

Sporadic-E (Es) occurrence rates from Global Position Satellite radio occultation (GPS-RO) measurements have shown to vary by nearly an order of magnitude between studies, motivating a comparison with ground-based measurements. In an attempt to find an accurate GPS-RO technique for detecting Es formation, occurrence rates derived using five previously developed GPS-RO techniques are compared to ionosonde measurements over an eight-year period from 2010-2017. GPS-RO measurements within 170 km of a ionosonde site are used to calculate Es occurrence rates and compared to the ground-truth ionosonde measurements. Each technique is compared individually for each ionosonde site and then combined to determine …


Global Ionosonde And Gps Radio Occultation Sporadic-E Intensity And Height Comparison, Joshua Y. Gooch Mar 2019

Global Ionosonde And Gps Radio Occultation Sporadic-E Intensity And Height Comparison, Joshua Y. Gooch

Theses and Dissertations

A global, multi-year comparison of low and mid-latitude COSMIC GPS radio occultation (RO) sporadic-E (Es) plasma frequency and altitude and Digisonde blanketing frequency (fbEs) and altitude within 150 km and 30 minutes of each other. RO methods used to estimate the intensity of the Es layer include the scintillation index S4, total electron content (TEC) with both a constant and variable Es cloud thickness, and an Abel transform. The S4 and TEC with varying thickness techniques both under-represent the fbEs values while the TEC with constant thickness and Abel transform better estimate Digisonde fbEs values. …


Modeling High-Altitude Nuclear Detonations Using Existing Ionospheric Models, Sophia G. Schwalbe Mar 2019

Modeling High-Altitude Nuclear Detonations Using Existing Ionospheric Models, Sophia G. Schwalbe

Theses and Dissertations

One threat to the United States is a nuclear weapon being detonated at high altitude over the country. The resulting electromagnetic pulse (EMP) could devastate the nation. Despite its destructive nature, the response of the ionosphere to such an event is poorly understood. This study assesses if existing ionospheric models, which are used to nowcast and forecast ionospheric changes, can be used to model the response to a high-altitude nuclear detonation (HAND). After comparing five ionosphere models, the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) was selected and modified to incorporate an array of F10.7 indices to serve as a proxy for …


Impacts Of Sub-Auroral Polarization Streams On High Frequency Operations As A Function Of Modeled Particle Energy Flux, Nathan D. Smith Mar 2018

Impacts Of Sub-Auroral Polarization Streams On High Frequency Operations As A Function Of Modeled Particle Energy Flux, Nathan D. Smith

Theses and Dissertations

Space weather events can cause irregularities within the ionosphere; in particular, this research examines sub-auroral polarization streams (SAPS), as their accompanying irregularities and effects can degrade high-frequency (HF) signal propagation. It is known that the strongest westerly current drifts delineating SAPS are associated with a deep ionospheric trough, which in turn contaminates HF data with clutter from the non-standard ionosphere. Having a methodology to track and identify these occurrences on current computational architecture would provide operators enhanced situational awareness in knowing to expect degradation in HF processes. This study has discovered a weak, yet significant, exponentially decaying correlation between maximum …


Sensitivity Analysis Of Empirical Parameters In The Ionosphere-Plasmasphere Model, Janelle V. Jenniges Mar 2011

Sensitivity Analysis Of Empirical Parameters In The Ionosphere-Plasmasphere Model, Janelle V. Jenniges

Theses and Dissertations

A sensitivity analysis of empirical parameters used in physics-based models was completed in this study to determine their effect on electron densities and total electron content (TEC) in the ionosphere. The model used was the Ionosphere-Plasmasphere Model (IPM) developed by Utah State University. The empirical parameters studied include the O+/O collision frequency, zonal wind, secondary electron production, nighttime ExB drifts, and tidal structure. The sensitivity analysis was completed by comparing a default run of the IPM to a run with the parameter adjusted for three geophysical cases. Many of the comparisons resulted in nonlinear changes to the model …


Analysis Of Plasma Bubble Signatures In The Ionosphere, Omar A. Nava Mar 2011

Analysis Of Plasma Bubble Signatures In The Ionosphere, Omar A. Nava

Theses and Dissertations

Plasma bubbles are large scale structures of depleted plasma density in Earth's ionosphere that disrupt radio and satellite communications, to include global navigation satellite systems. This study used the Ionospheric Forecast Model (IFM) to analyze affected look angles and total electron content (TEC) differences due to plasma bubbles of various sizes for 27 geophysical conditions consisting of different seasons and levels of solar and geomagnetic activity at 421 GPS ground stations worldwide. Overall, different geographic locations and plasma bubble configurations produced different affected look angle profiles. Bigger plasma bubbles, larger density depletion factors, higher levels of solar activity and the …


A Validation Of The Parameterized Real-Time Ionospheric Specification Model (Prism) Version 1.7b, Shawn D. Filby Nov 1997

A Validation Of The Parameterized Real-Time Ionospheric Specification Model (Prism) Version 1.7b, Shawn D. Filby

Theses and Dissertations

The most current version of the Parameterized Real-time Ionospheric Specification Model (PRISM), version 1.7b, was validated using Digital Ionospheric Sounding System (DISS) measurements of F2 layer critical frequency (foF2) and F2 peak electron density height (hmF2) as the "ground truth." PRISM was executed, first, with no real-time input parameter and, second, with Global Positioning System (GPS) Total Electron Content (TEC) measurements as the sole real-time parameter. Hourly values of hmF2 and foF2 over 123 days in 1994-1996 (solar minimum conditions) and covering three seasons (equinox, summer solstice, and winter solstice) were compared for Wallops Island, Virginia, and Point Arguello, California, …