Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses and Dissertations

Plasma and Beam Physics

Lasers

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physics

Kinetics Of Higher Lying Rb States After, Pulsed Excitation Of The D2 Transition In The Presence Of Helium, Austin J. Wallerstein Mar 2016

Kinetics Of Higher Lying Rb States After, Pulsed Excitation Of The D2 Transition In The Presence Of Helium, Austin J. Wallerstein

Theses and Dissertations

The Diode Pumped Alkali Laser (DPAL) is a high power, three-level laser system that employs diode bars to optically excite an alkali metal vapor. It lases along the D1 transition, between the two lowest energy levels, 2P1/2 and 2S1/2. Higher lying energy states are produced at higher population density via energy pooling and multiphoton processes. Pulsed laser excitation of rubidium at approximately 1 MW=cm2 has been studied at helium pressure up to 900 Torr. Emissions from energy states as high as 82D suggests modest ionization, though these intensities decrease drastically at buffer gas …


Q-Switched And Mode Locked Short Pulses From A Diode Pumped, Yb-Doped Fiber Laser, Seth M. Swift Mar 2009

Q-Switched And Mode Locked Short Pulses From A Diode Pumped, Yb-Doped Fiber Laser, Seth M. Swift

Theses and Dissertations

A diode-pumped, ytterbium (Yb)-doped fiber laser system was designed and demonstrated to operate in continuous wave (cw), passively Q-switched and possibly passively mode locked operation. To our knowledge, this was the first fiber laser oscillator built at the Air Force Institute of Technology. A Cr4+:YAG (Chromium: Ytterbium Aluminum Garnett) crystal was used as a saturable absorber to generate Q-switched pulses. Attempts to mode lock the laser were performed using a semiconductor saturable absorber mirror (SESAM) and through nonlinear polarization rotation (NPR). The best output power result was 5 Watts (W) while pumping at 8.3 W, yielding 60% efficiency …


Demonstration Of A Strategy To Perform Two-Dimensional Diode Laser Tomography, Ryan N. Givens Mar 2008

Demonstration Of A Strategy To Perform Two-Dimensional Diode Laser Tomography, Ryan N. Givens

Theses and Dissertations

Demonstration of a strategy to perform two-dimensional diode laser tomography using a priori knowledge from symmetry arguments and computational fluid dynamic (CFD) calculations is presented for a flat flame burner. The strategy uses an optimization technique to determine flame diameter and location using a vector quantization approach. Next, the variance in a training set, produced from CFD calculations, is captured using principal components analysis. The information in the training set allows interpolation between beam paths resulting in temperature and density maps. Finally, the TDLAS temperature and density maps are shown to agree with traditional thermocouple measurements of the flat flame …


Time Resolution Of Collapse Events During The Progation Of Ultraviolet Filaaments, Teresa J. Fondren Oct 2007

Time Resolution Of Collapse Events During The Progation Of Ultraviolet Filaaments, Teresa J. Fondren

Theses and Dissertations

Long distance propagation, or filamentation, of short, intense laser pulses is suggested to be possible through the balance of two effects: self-focusing, when a nonlinear index of refraction of air is induced by high intensities, and de-focusing, due to the plasma created by the pulse. Applications for filamentation include areas such as remote sensing and directed energy. A split-step spectral propagation simulation is used to model the behavior of a high intensity ultraviolet laser pulse propagating through air. Convergence of femtosecond duration collapses that form on the leading edge of the pulse in the time domain is achieved with an …