Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford Jan 2016

Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford

Theses and Dissertations

The work of this dissertation is centered on two non-conventional synthetic approaches to ferromagnetic nanomaterials: high-throughput experimentation (HTE) (polyol process) and continuous flow (CF) synthesis (aqueous reduction and the polyol process). HTE was performed to investigate phase control between FexCo1-x and Co3-xFexOy. Exploration of synthesis limitations based on magnetic properties was achieved by reproducing Ms=210 emu/g. Morphological control of FexCo1-x alloy was achieved by formation of linear chains using an Hext. The final study of the FexCo1-x chains used DoE to …


Electronic Structure And Stability Of Ligated Superatoms And Bimetallic Clusters, William H. Blades Jan 2016

Electronic Structure And Stability Of Ligated Superatoms And Bimetallic Clusters, William H. Blades

Theses and Dissertations

Quantum confinement in small metal clusters leads to a bunching of states into electronic shells reminiscent of shells in atoms. The addition of ligands can tune the valence electron count and electron distribution in metal clusters. A combined experimental and theoretical study of the reactivity of methanol with AlnIm clusters reveals that ligands can enhance the stability of clusters. In some cases the electronegative ligand may perturb the charge density of the metallic core generating active sites that can lead to the etching of the cluster. Also, an investigation is conducted to understand how the bonding …


Electronic Structure Of Lithium Tetraborate, David J. Wooten Jun 2010

Electronic Structure Of Lithium Tetraborate, David J. Wooten

Theses and Dissertations

Due to interest as neutron detection material, an investigation of Li2B4O7(110) and Li2B4O7(100) was undertaken, utilizing photoemission and inverse photoemission spectroscopic techniques. The measured band gap depended on crystallographic direction with the band gaps ranging from 8.9±0.5 eV to 10.1±0.5 eV. The measurement yielded a density of states that qualitatively agreed with the theoretical results from model bulk band structure calculations for Li2B4O7; albeit with a larger band gap than predicted, but consistent with the known deficiencies of LDA and DFT calculations. …


The Material Properties Of Cssnbr3 And Csbr:Sn-1% And Their Potential As Scintillator Detector Material, Neal B. Kleinschmidt Mar 2010

The Material Properties Of Cssnbr3 And Csbr:Sn-1% And Their Potential As Scintillator Detector Material, Neal B. Kleinschmidt

Theses and Dissertations

The search for superior nuclear radiation detection materials is ongoing. Current scintillator materials using Thallium doped Sodium Iodide or Cesium Iodide are the benchmarks for ease of use and quick identification of isotope species. This research aims to explore Cesium Bromide doped with 1% molar tin (CsBr:Sn-1%) and Cesium Tin Bromide (CsSnBr3) as candidate materials for a new scintillator. The techniques of Extended X-Ray Absorption Fine Structure (EXAFS), X-Ray Absorption Near Edge Structure (XANES) and Cathodoluminescence are used to determine the suit- ability of CsSnBr3 and CsBr:Sn-1% with Sn4+ as a potential scintillator materials and explore their …


Three Dimensional Positron Annihilation Momentum Measurement Technique (3dpamm) Applied To Measure Oxygen-Atom Defects In 6h Silicon Carbide, Christopher S. Williams Mar 2010

Three Dimensional Positron Annihilation Momentum Measurement Technique (3dpamm) Applied To Measure Oxygen-Atom Defects In 6h Silicon Carbide, Christopher S. Williams

Theses and Dissertations

A three-dimensional Positron Annihilation Spectroscopy System (3DPASS) capable to simultaneously measure three-dimensional electron-positron (e--e+) momentum densities measuring photons derived from e--e+ annihilation events was designed and characterized. 3DPASS simultaneously collects a single data set of correlated energies and positions for two coincident annihilation photons using solid-state double-sided strip detectors (DSSD). Positions of photons were determined using an interpolation method which measures a figure-of-merit proportional to the areas of transient charges induced on both charge collection strips directly adjacent to the charge collection strips interacting with the annihilation photons. The subpixel resolution was measured for both double-sided strip detectors (DSSD) and …


In-Situ, Gate Bias Dependent Study Of Neutron Irradiation Effects On Algan/Gan Hfets, Janusz K. Mikina Mar 2010

In-Situ, Gate Bias Dependent Study Of Neutron Irradiation Effects On Algan/Gan Hfets, Janusz K. Mikina

Theses and Dissertations

AlGaN/GaN Heterostructure Field Effect Transistors (HFETs) have come under increased study in recent years due to their highly desirable material and electrical properties and survivability even during and after exposure to extreme temperature and radiation environments. In this study, unpassivated and SiN passivated Al0.27Ga0.73N/GaN HFETs were subjected to neutron radiation at 120 K. The primary focus of the research was the effects of neutron irradiation on drain current, gate leakage current, threshold voltage shift, gate-channel capacitance, and the effects of biasing the gate during irradiation. In-situ measurements were conducted on transistor current, gate-channel capacitance, and gate …