Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

The Summer Undergraduate Research Fellowship (SURF) Symposium

Articles 1 - 27 of 27

Full-Text Articles in Physics

Stability Of The Interface Between Two Immiscible Liquids During Injection Into A Tapered Hele-Shaw Cell, Zihao Lin, Ivan C. Christov, Daihui Lu Aug 2018

Stability Of The Interface Between Two Immiscible Liquids During Injection Into A Tapered Hele-Shaw Cell, Zihao Lin, Ivan C. Christov, Daihui Lu

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the early twentieth century, petroleum and mining engineers noticed that water does not displace oil uniformly. This phenomenon, when water penetrates through oil, is now known as viscous fingering. This discovery and the following extensive research have contributed to enhancing oil recovery. In this paper, we describe a numerical study conducted on the stability of the interface between two immiscible liquids in converging and diverging Hele-Shaw cells with varying gradients. Hele-Shaw cells are narrow flow geometries that mimic the properties of a porous medium with fixed permeability. By using computational tools built on the OpenFOAM platform, the multiphase flow ...


Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung Aug 2018

Steady-State Method To Measure The In-Plane Thermal Conductivity Of Thin Sheet Materials, Evgeny Pakhomenko, Andrew James Wildridge, Abraham Mathew Koshy, Souvik Das, Andreas Jung

The Summer Undergraduate Research Fellowship (SURF) Symposium

A new generation of silicon pixel detectors is required to cope with the unprecedented luminosities at the high-luminosity phase of the Large Hadron Collider (HL-LHC) in 2025. The HL-LHC provides a high radiation, high interaction rate environment for the innermost detector region of the CMS detector. This can lead to an uncontrolled increase in temperature of the detector that can destroy the silicon pixels. Moreover, too high operating temperature can add noise to the data obtained from the detector and can slow the read out cheap down. Therefore, the Phase II upgrade to the Compact Muon Solenoid (CMS) experiment requires ...


Incorporating Collisions And Resistance Into The Transition From Field Emission To The Space Charge Regime, Samuel D. Dynako, Adam M. Darr, Allen L. Garner Aug 2018

Incorporating Collisions And Resistance Into The Transition From Field Emission To The Space Charge Regime, Samuel D. Dynako, Adam M. Darr, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advancements in microelectromechanical systems (MEMS) and microplasmas, particularly with respect to applications in combustion and biotechnology, motivate studies into microscale gas breakdown to enable safe system design and implementation. Breakdown at microscale deviates from that predicted by Paschen’s law due to field emission—the stripping of electrons from the cathode in the presence of strong surface field—and follows the Fowler-Nordheim (FN) law. As injected current increases at this length scale, electrons accumulate in the gap and FN electron emission becomes space charge limited, leading to the Child-Langmuir (CL) law at vacuum and the Mott-Gurney (MG) law at high ...


Majorana Spin-Flip Transition In The Alpha Magnetic Trap, Miguel Alarcon, Colin Riggert, Francis Robicheaux Aug 2018

Majorana Spin-Flip Transition In The Alpha Magnetic Trap, Miguel Alarcon, Colin Riggert, Francis Robicheaux

The Summer Undergraduate Research Fellowship (SURF) Symposium

The main purpose of the ALPHA collaboration is to trap antihydrogen atoms so that the Charge Conjugation-Parity Transformation-Time Reversal (CPT) symmetry can be tested. The trapping mechanism consists on an octupole magnet that traps the atoms near the magnetic field minima. Once trapped, due to the Majorana spin-flip effect, atoms can escape by changing the orientation of its spin. The magnetic field generated by the octupole magnet present in the trap has multiple zeroes of different orders. These zeroes could affect the probability of a spin flip, and therefore alter the number of escaped atoms. The main problem tackled by ...


Raman Spectroscopy Of Oxygen Evolution Catalysts And Psii Manganese Model Compounds, Sergei Shmakov, Daniel A. Hartzler, Alireza Karbakhsh Ravari, Yulia Pushkar Aug 2017

Raman Spectroscopy Of Oxygen Evolution Catalysts And Psii Manganese Model Compounds, Sergei Shmakov, Daniel A. Hartzler, Alireza Karbakhsh Ravari, Yulia Pushkar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photosynthesis is the basis of life on earth, and oxygen evolution catalysts are key components of this complicated, yet not fully understood process. Photosystem II, a large membrane bound pigment-protein complex, is the key system that facilitates oxygenic photosynthesis via the oxygen evolving complex (a natural oxygen evolving catalyst). It is a key component in oxygen producing catalysts, which can be used in fields such as energy production and biomimetic catalysts. The oxygen evolution cycle, or Kok cycle going within it is still not studied completely. In this project, we were studying the vibrational (and structural) state of a Manganese ...


Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher Aug 2017

Optimization And Control Of Production Of Graphene, Atharva Hans, Nimish M. Awalgaonkar, Majed Alrefae, Ilias Bilionis, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2-dimensional element of high practical importance. Despite its exceptional properties, graphene’s real applications in industrial or commercial products have been limited. There are many methods to produce graphene, but none has been successful in commercializing its production. Roll-to-roll plasma chemical vapor deposition (CVD) is used to manufacture graphene at large scale. In this research, we present a Bayesian linear regression model to predict the roll-to-roll plasma system’s electrode voltage and current; given a particular set of inputs. The inputs of the plasma system are power, pressure and concentration of gases; hydrogen, methane, oxygen, nitrogen and ...


Machine Learning In Xenon1t Analysis, Dillon A. Davis, Rafael F. Lang, Darryl P. Masson Aug 2017

Machine Learning In Xenon1t Analysis, Dillon A. Davis, Rafael F. Lang, Darryl P. Masson

The Summer Undergraduate Research Fellowship (SURF) Symposium

In process of analyzing large amounts of quantitative data, it can be quite time consuming and challenging to uncover populations of interest contained amongst the background data. Therefore, the ability to partially automate the process while gaining additional insight into the interdependencies of key parameters via machine learning seems quite appealing. As of now, the primary means of reviewing the data is by manually plotting data in different parameter spaces to recognize key features, which is slow and error prone. In this experiment, many well-known machine learning algorithms were applied to a dataset to attempt to semi-automatically identify known populations ...


Thermomechanical Properties Of Aluminium Heaters To Test The Compact Muon Solenoid Cooling System For Phase Two Upgrade, Sandra Jimena González, Timothy Matthew Jones Aug 2017

Thermomechanical Properties Of Aluminium Heaters To Test The Compact Muon Solenoid Cooling System For Phase Two Upgrade, Sandra Jimena González, Timothy Matthew Jones

The Summer Undergraduate Research Fellowship (SURF) Symposium

The main objectives of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider are precision studies of the Standard Model of Particle Physics and the discovery of physics beyond it. To meet that, it is essential for the CMS detector to function at the highest efficiency for detecting subatomic particles within various technical constraints. In particular, the readout chips of the Pixel Tracker sub-detector produce significant heat and must be kept at -10 °C to ensure optimal performance and reduce cumulative damage in the high radiation environment. Thus, it is necessary to design a cooling system to extract ...


Design And Fabrication Of An Electrical Breakdown Facility, Prit Chovatiya, Animesh Sharma, Alexey Shashurin Aug 2017

Design And Fabrication Of An Electrical Breakdown Facility, Prit Chovatiya, Animesh Sharma, Alexey Shashurin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Usage of traditional experimental instrumentation has not kept up with the rate of advancement in the modern educational material. Teaching aids used in academia have to be updated to ensure effective understanding of content among the students. The use of outdated vacuum chambers as visual aids in plasma physics classrooms have proven to be ineffective for the students and teachers, due to limited viewing ports on the metallic walls of the vacuum chamber for viewing the plasma discharge phenomenon. It is important to address this challenge, which invigorates the need for the use of a transparent vacuum chamber as a ...


Classifying Pattern Formation In Materials Via Machine Learning, Lukasz Burzawa, Shuo Liu, Erica W. Carlson Aug 2016

Classifying Pattern Formation In Materials Via Machine Learning, Lukasz Burzawa, Shuo Liu, Erica W. Carlson

The Summer Undergraduate Research Fellowship (SURF) Symposium

Scanning probe experiments such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM) on strongly correlated materials often reveal complex pattern formation that occurs on multiple length scales. We have shown in two disparate correlated materials that the pattern formation is driven by proximity to a disorder-driven critical point. We developed new analysis concepts and techniques that relate the observed pattern formation to critical exponents by analyzing the geometry and statistics of clusters observed in these experiments and converting that information into critical exponents. Machine learning algorithms can be helpful correlating data from scanning probe experiments to theoretical models ...


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of common ...


A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca Aug 2016

A Fast Model For The Simulation Of External Gear Pumps, Zechao Lu, Xinran Zhao, Andrea Vacca

The Summer Undergraduate Research Fellowship (SURF) Symposium

External gear pump is an important category of positive displacement fluid machines used to perform the mechanical–hydraulic energy conversions in many fluid power applications. An efficient numerical simulation program is needed to simulate the system in order to provide a direction for design purpose. The model consists of a lumped parameter fluid dynamic model and a model that simulates the radial micro-motions of the gear’s axes of rotation. The system consists of a set of ordinary differential equations related to the conservation on mass of the internal control volumes of the pump, which are given by the tooth ...


Particle Swarm Transport In Porous Media, Alison R. Hoe, Laura J Pyrak-Nolte Aug 2016

Particle Swarm Transport In Porous Media, Alison R. Hoe, Laura J Pyrak-Nolte

The Summer Undergraduate Research Fellowship (SURF) Symposium

In recent years, interest in particulate transport in the subsurface has increased with the increased use of micro-particulates in consumer products. In this research, we study particulate swarm transport through porous media that depends on the complexity of the flow paths, on the size and shape of the particles and on the physical interactions among the particles, fluids, and matrix. Specifically, we investigate the effect of pore geometry and grain wettability on swarm evolution under gravity. Swarms were composed of 3 micron polystyrene beads in either water or water with KCL (%). Two types of grains are used to simulate a ...


Dsmc Simulation Of Microstructure Actuation By Knudsen Thermal Force, Aaron Pikus, Israel Sebastiao, Andrew Strongrich, Alina Alexeenko Aug 2015

Dsmc Simulation Of Microstructure Actuation By Knudsen Thermal Force, Aaron Pikus, Israel Sebastiao, Andrew Strongrich, Alina Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

In many industrial and research applications there is a need for vacuum sensors with higher accuracy and spatial resolution than what is currently available. Examples of target applications include high-altitude platforms, satellites and in-vacuum manufacturing processes such as freeze-drying of food and pharmaceuticals. In this connection, a novel pressure sensor, named Microelectromechanical In-plane Knudsen Radiometric Actuator (MIKRA), has been developed by at Purdue University. MIKRA is based on Knudsen thermal forces generated by rarefied flow driven by thermal gradients within the microstructure Thus, the goal of this work is to model the rarefied gas flow in the MIKRA sensor under ...


Using Dissipative Particle Dynamics For Modeling Surfactants, Yuchen Zhang, Arezoo M. Ardekani Aug 2015

Using Dissipative Particle Dynamics For Modeling Surfactants, Yuchen Zhang, Arezoo M. Ardekani

The Summer Undergraduate Research Fellowship (SURF) Symposium

Oil recovery is an industrial process that injects aqueous solutions into an oil reservoir to pump out crude oil and promote the oil production. The aqueous solution contains surfactants for reducing the interfacial tension (IFT) between aqueous phase and oil. The critical micelle concentration (CMC) is the concentration of surfactant above which micelles form and the interfacial tension reaches a plateau. Our research seeks to measure IFT and CMC for surfactants using dissipative particle dynamics (DPD) technique, which is a coarse-grained method based on the molecular dynamics. We first study how IFT is influenced by the surfactant concentration. Furthermore, another ...


Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner Aug 2015

Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is a growing need for economical, effective, and safe methods of sterilizing fresh produce. The most common method is a chlorine wash, which is expensive and may introduce carcinogens. High voltage cold atmospheric pressure plasmas are a promising solution that has demonstrated a germicidal effect; however, the responsible chemical mechanisms and reaction pathways are not fully understood. To elucidate this chemistry, we used optical emission spectroscopy to measure the species produced in the plasma generated by a 60 Hz pulsed dielectric barrier discharge in a plastic box containing various fill gases (He, N2, CO2, dry air, or ...


Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko Aug 2015

Kinetic Modeling Of Roll To Roll Rfcvd Plasma, Kudzo S. Ahegbebu, Siva Sashank Tholeti, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Roll-to-roll radio frequency plasma enhanced chemical vapor deposition (R2R RFCVD) is a technique for large-scale synthesis of high quality graphitic nanopetals. Graphitic nanopetals are petal-like graphene structures with remarkable electrical and mechanical properties with major industrial applications such as microsupercapacitors. RFCVD uses a non-equilibrium plasma with high energy electrons to catalyze chemical reactions, induce the creation of free radicals, and promote otherwise high temperature chemistry in a low temperature environment. Understanding how bulk plasma characteristics (particularly, power and number densities) vary with changing reactor parameters is an important step towards optimizing synthesis techniques. In our present work we use the ...


Effect Of Helium Ions Energy On Molybdenum Surfaces Under Extreme Conditions, Joseph Fiala, Jitendra K. Tripathi, Sean Gonderman, Ahmed Hassanein Aug 2015

Effect Of Helium Ions Energy On Molybdenum Surfaces Under Extreme Conditions, Joseph Fiala, Jitendra K. Tripathi, Sean Gonderman, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Plasma facing components (PFCs) in fusion devices must be able to withstand high temperatures and erosion due to incident energetic ion radiations. Tungsten has become the material of choice for PFCs due to its high strength, thermal conductivity, and low erosion rate. However, its surface deteriorates significantly under helium ion irradiation in fusion-like conditions and forms nanoscopic fiber-like structures, or fuzz. Fuzz is brittle in nature and has relatively lower thermal conductivity than that of the bulk material. Small amounts of fuzz may lead to excessive contamination of the plasma, preventing the fusion reaction from taking place. Despite recent efforts ...


Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen Aug 2015

Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quantum simulation using ultra-cold atoms, such as Bose-Einstein Condensates (BECs), offers a very flexible and well controlled environment to simulate physics in different systems. For example, to simulate the effects of spin orbit coupling (SOC) on electrons in solid state systems, we can make a SOC BEC which mimics the behavior of SOC electrons. The goal of this project is to see how the superfluid property of BECs change in the presence of SOC. In particular, we plan to measure the critical velocity of an 87Rb BEC with and without SOC by stirring it with a laser. This laser needs ...


Characterizing New Calibration Sources In Liquid Xenon Dark Matter Searches, Evan P. Bray, Rafael Lang, Sean Macmullin Aug 2014

Characterizing New Calibration Sources In Liquid Xenon Dark Matter Searches, Evan P. Bray, Rafael Lang, Sean Macmullin

The Summer Undergraduate Research Fellowship (SURF) Symposium

In order to use the XENON1T liquid xenon detector as a means for detecting dark matter, the response to nuclear and electronic recoils must be well calibrated. Electronic-recoil calibration of XENON1T will be done by using the noble gas radon-220 that emanates from a custom thorium-228 source to observe the electron recoils that its daughter elements induce in liquid xenon. A silicon PIN diode was constructed to ensure that the Th228 source does not contaminate the system with the long-lived isotopes Th228 (T1/2 of 1.9 y) or Radium-224 (T1/2 of 3.6 d). The PIN diode was ...


Double-Pulse Nd:Yag-Co2 Libs Excitation For Bulk And Trace Analytes, Jason R. Becker, Patrick Skrodzki, Prasoon Diwakar, Sivanandan Harilal, Ahmed Hassanein Aug 2014

Double-Pulse Nd:Yag-Co2 Libs Excitation For Bulk And Trace Analytes, Jason R. Becker, Patrick Skrodzki, Prasoon Diwakar, Sivanandan Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser-induced breakdown spectroscopy [LIBS] is a commonly used technique for multi-element analyses for various applications such as space exploration, nuclear forensics, environmental analysis, process monitoring. The advantages of the LIBS technique include robustness, ease of use, field portability, and real-time, non-invasive multi-element analyses. However, in comparison to other lab based analytical techniques, it suffers from low precision and low sensitivity. In order to overcome these drawbacks, various approaches have been used, including double-pulse LIBS [DPLIBS]. Typically, various wavelength combinations of two Nd: yttrium aluminum garnet [YAG] lasers have been used for DPLIBS. However, the use of long wavelength (CO2 ...


Doube-Pulse Laser-Induced Breakdown Spectroscopy Of Multi-Element Sample Containing Low- And High-Z Analytes, Patrick J. Skrodzki, Jason R. Becker, Prasoon K. Diwakar Ph. D., Sivanandan S. Harilal Ph. D., Ahmed Hassanein Ph. D. Aug 2014

Doube-Pulse Laser-Induced Breakdown Spectroscopy Of Multi-Element Sample Containing Low- And High-Z Analytes, Patrick J. Skrodzki, Jason R. Becker, Prasoon K. Diwakar Ph. D., Sivanandan S. Harilal Ph. D., Ahmed Hassanein Ph. D.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Laser-induced breakdown spectroscopy (LIBS) is a portable, remote, non-invasive analytical technique which effectively distinguishes neutral and ionic species for a range of low- to high-Z elements in a multi-element target. Subsequently, LIBS holds potential in special nuclear material (SNM) sensing and nuclear forensics requiring minimal sample preparation and detecting isotopic shifts which allows for differentiation in SNM (namely U) enrichment levels. Feasible applications include not only nonproliferation and homeland security but also nuclear fuel prospecting and industrial safeguard endorsement. Elements of higher mass with complex atomic structures, such as U, however, result in crowded emission spectra with LIBS, and characteristic ...


Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan Aug 2014

Building Predictive Chemistry Models, Christopher Browne, Nicolas Onofrio, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Density Functional Theory (DFT) simulations allow for sophisticated modeling of chemical interactions, but the extreme computational cost makes it inviable for large scale applications. Molecular dynamics models, specifically ReaxFF, can model much larger simulations with greater speed, but with lesser accuracy. The accuracy of ReaxFF can be improved by comparing predictions of both methods and tuning ReaxFF’s parameters. Molecular capabilities of ReaxFF were gauged by simulating copper complexes in water over a 200 ps range, and comparing energy predictions against ReaxFF. To gauge solid state capabilities, volumetric strain was applied to simulated copper bulk and the strain response functions ...


Investigation Of Time Varying Nuclear Decay Rates, Peter G. Barton, Rafael F. Lang Oct 2013

Investigation Of Time Varying Nuclear Decay Rates, Peter G. Barton, Rafael F. Lang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Since the discovery of radioactive decay, radioactive decay rates have consistently shown to be constant. Recently, groups of researchers around the world have noticed variation in the decay rates of different radioactive isotopes, while other groups have noticed no such effect. If the variation is truly varying decay rates, this would imply groundbreaking new physics and would have implications for practices such as carbon dating. More sophisticated experiments are required to determine if the variations are truly new physics or systematic effects inherent to nuclear decay experiments. We are building an experiment where activity data from various radioactive sources will ...


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics ...


Investigation Of Major Intermolecular Interactions In 7,8-Dihydrobenzo(K)Phenanthridin-6(5h)-One Crystal Using Quantum Calculations And Crystallographic Visualization Programs, Zhiwei Liao, Tonglei Li, Mingtao Zhang Oct 2013

Investigation Of Major Intermolecular Interactions In 7,8-Dihydrobenzo(K)Phenanthridin-6(5h)-One Crystal Using Quantum Calculations And Crystallographic Visualization Programs, Zhiwei Liao, Tonglei Li, Mingtao Zhang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, tablets and capsules are the most common ways of delivering drugs. The active pharmaceutical ingredients and excipients used to make those tablets and capsules are in their crystalline form generally. However, a single molecule can form multiple different crystal structures because of different packing arrangements of the molecules. These different crystal structures have identical chemical composition but different properties such as solubility, density, stability, etc. This phenomenon is called polymorphism. Occurrence of polymorphism could be a disaster for both patients and pharmaceutical companies, as the drug could lose its efficacy due to changes in properties. Studying intermolecular interactions in ...


Fabrication Of Multilayered Structure For Coherent Random Lasing, John Rauchenstein, Young L. Kim Oct 2013

Fabrication Of Multilayered Structure For Coherent Random Lasing, John Rauchenstein, Young L. Kim

The Summer Undergraduate Research Fellowship (SURF) Symposium

High powered lasers have many applications, including medical treatment and surgery. However, these lasers are extremely expensive and are therefore not widely available. The aim of this study was to demonstrate a method to create such a laser with significantly decreased overall cost and increased efficiency. In order to do this, we explored a phenomenon called random lasing which is a light amplification process. To start with, a low-cost pumping laser is directed at normal incidence toward a multi-layered sample with two alternating layers. At first pearl, a naturally found material that has many organic nano-scale layers (similar to the ...