Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen Aug 2018

High-Brilliance, High-Flux Compact Inverse Compton Light Source, K. E. Deitrick, G. A. Krafft, B. Terzić, J. R. Delayen

Physics Faculty Publications

The Old Dominion University Compact Light Source (ODU CLS) design concept is presented-a compact Inverse Compton Light Source (ICLS) with flux and brilliance orders of magnitude beyond conventional laboratory-scale sources and greater than other compact ICLS designs. This concept utilizes the physics of inverse Compton scattering of an extremely low emittance electron beam by a laser pulse of rms length of approximately two-thirds of a picosecond (2/3 ps). The accelerator is composed of a superconducting radio frequency (SRF) reentrant gun followed by four double-spoke SRF cavities. After the linac are three quadrupole magnets to focus the electron beam to the …


Superconducting Rf-Dipole Deflecting And Crabbing Cavities, Subashini De Silva, Jean R. Delayen Jan 2013

Superconducting Rf-Dipole Deflecting And Crabbing Cavities, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

Recent interests in compact deflecting and crabbing structures for future accelerators and colliders have initiated the development of novel rf structures. The superconducting rf-dipole cavity is one of the first compact designs with attractive properties such as high gradients, high shunt impedance, the absence of lower order modes, and widely separated higher order modes. Two rf-dipole cavities at 400 MHz and 499 MHz have been designed, fabricated and tested as proof-of-principle designs of compact deflecting and crabbing cavities for the LHC high luminosity upgrade and Jefferson Lab 12 GeV upgrade. The first rf tests have been performed on the rf-dipole …


Beam Dynamics Studies Of Parallel-Bar Deflecting Cavities, S. Ahmed, G. A. Krafft, K. Deitrick, Subashini U. De Silva, Jean R. Delayen, M. Spata, M. Tiefenback, A. Hofler, K. Beard Jan 2011

Beam Dynamics Studies Of Parallel-Bar Deflecting Cavities, S. Ahmed, G. A. Krafft, K. Deitrick, Subashini U. De Silva, Jean R. Delayen, M. Spata, M. Tiefenback, A. Hofler, K. Beard

Physics Faculty Publications

We have performed three-dimensional simulations of beam dynamics for parallel-bar transverse electromagnetic mode (TEM) type RF separators: normal- and superconducting. The compact size of these cavities as compared to conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of eight 2-cell normal conducting cavities or a one- or two-cell superconducting structure are enough to produce the required vertical displacement at the Lambertson magnet. Both the normal and superconducting structures show very small emittance dilution due to the …


Conceptual Design Of A Polarized Medium Energy Electron-Ion Collider At Jlab, S. Ahmed, A. Bogacz, Ya. Derbenev, A. Hutton, Geoffrey Krafft, R. Li, V. Morozov, F. Pilat, R. Rimmer, Y. Roblin, T. Satogata, M. Spata, B. Terzić, M. Tiefenback, H. Wang, B. Yunn, Y. Zhang, P. Chetsov, Jean R. Delayen, Subashini Desilva, Hisham Sayed, V. Dudnikov, R. Johnson, F. Marhauser, M. Sullivan, S. Manikonda, P. N. Ostroumov, S. Abeyratne, B. Erdelyi, Y. Kim, A. Kondratenko Jan 2011

Conceptual Design Of A Polarized Medium Energy Electron-Ion Collider At Jlab, S. Ahmed, A. Bogacz, Ya. Derbenev, A. Hutton, Geoffrey Krafft, R. Li, V. Morozov, F. Pilat, R. Rimmer, Y. Roblin, T. Satogata, M. Spata, B. Terzić, M. Tiefenback, H. Wang, B. Yunn, Y. Zhang, P. Chetsov, Jean R. Delayen, Subashini Desilva, Hisham Sayed, V. Dudnikov, R. Johnson, F. Marhauser, M. Sullivan, S. Manikonda, P. N. Ostroumov, S. Abeyratne, B. Erdelyi, Y. Kim, A. Kondratenko

Physics Faculty Publications

A medium energy electron-ion collider is envisioned as the primary future of the JLab nuclear science program beyond the 12 GeV upgraded CEBAF. The present conceptual design selects a ring-ring collider option, covers a CM energy range up to 65 GeV for collisions of polarized electrons with polarized light ions or unpolarized light to heavy ions, and reaches a luminosity at above 1034 cm-2s-1 per detector over multiple interaction points. This paper presents a brief description of the current conceptual design of the accelerator.