Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Traveling-Wave Electrophoresis: 1d Model, Austin Green Dec 2020

Traveling-Wave Electrophoresis: 1d Model, Austin Green

Physics Capstone Projects

A 1D model of traveling-wave electrophoresis predicts that molecular diffusion raises the trapping threshold and that other physical properties of the species effect the trapping threshold as well. Small concentrations, below 5μM, raise the trapping threshold for high diffusivity species, resulting in a lower efficiency. Species with a mid-range electrophoretic mobility and diffusivity have their trapping threshold slightly lowered with an increase in concentration, leading to more particles traveling with the wave.


National Security And Climate Change, Madison Moran Dec 2020

National Security And Climate Change, Madison Moran

Physics Capstone Projects

Certain scientific subjects are often divisive or technical, which makes those topics difficult to discuss with audiences outside the scientific sphere. One way of getting around this obstacle is to cater scientific communication to different target audiences to cut through any audience biases. In order to accomplish that, a communicator needs to understand the relationship between audiences’ worldviews, and what they know, feel, and do regarding the subject at hand, and then how that relationship influences the types of media audiences trust and to which they respond positively. The following study investigates the worldviews of a military audience with respect …


Hodographic Analysis Of Na Lidar Data To Measure Atmospheric Gravity Wave Parameters, Jeffrey Ormsby Aug 2020

Hodographic Analysis Of Na Lidar Data To Measure Atmospheric Gravity Wave Parameters, Jeffrey Ormsby

Physics Capstone Projects

The Utah State University Sodium lidar observatory, hosted in Science and Engineering Research building at Logan campus, measures the winds and temperature near the boundary of eddy diffusion dominated upper atmosphere between 80 and 110-km, where various atmospheric internal waves, especially atmospheric gravity waves (buoyancy waves), play important roles in the dynamics and chemistry. In this study, using a hodographic algorithm, the lidar data were analyzed to extract critical parameters of these gravity waves detected in this region, such as horizontal propagating phase velocity and wavelength. Results were compared with the independent Advanced Atmospheric Temperature Mapper (AMTM) observations, co-located at …


Fabrication Of Suspended Microbolometers On Soi Wafers, Isaac Maxfield May 2020

Fabrication Of Suspended Microbolometers On Soi Wafers, Isaac Maxfield

Physics Capstone Projects

A bolometer is a device to measure radiation energy by converting photon energy into heat on an isolated absorber. We plan to use carbon-nanotube (CNT) based absorber to enhance the photon absorption. The absorber is a few microns in size and is suspended with micron-sized bridges which also support metal lines for electrical measurements.


Synthesis Of Graphene By Liquid Precursors At Lower Temperatures, Clayton Hansen May 2020

Synthesis Of Graphene By Liquid Precursors At Lower Temperatures, Clayton Hansen

Physics Capstone Projects

Benzene, toluene, and xylene can be liquid precursors for graphene and carbon nanotube synthesis. However, the growth mechanisms can have greater variances for different carbon allotropes. In the case of graphene, Cu can be the catalyst for dehydrogenation and provides a weakly-coupled substrate for 2-dimensional graphene nucleation and growth. In the case of carbon nanotubes, Fe nanoparticles are essential to catalyze the C-C bonds breaking and dissolve carbon before the precipitation of a graphene cap over the catalyst particle where a tube forms. Controlling the precursor feed rate is crucial for a successful synthesis. In this research, we developed a …


Material Outgassing Kinetics: The Development Of A Testing Capability, Alex Kirkman May 2020

Material Outgassing Kinetics: The Development Of A Testing Capability, Alex Kirkman

Physics Capstone Projects

Contamination due to outgassing of materials can cause the degradation of critical hardware of a spacecraft. Using outgassing rates, kinetic expressions can be developed and used in models to predict the evolution of molecules and migration of contaminants for specific materials. These models could be used in the selection process of materials to help mitigate the amount of contamination of mission critical hardware for the expected life of the spacecraft. By using the ASTM E1559 test standard this can be achieved. This standard uses the quartz crystal microbalance (QCM) collection approach. A temperature-controlled effusion cell, containing the sample material, impinges …


Determining The Phase Of The Diurnal, Solar Thermal Tidal Wave In The Upper Atmosphere Using Nighttime Na Lidar Measurements, Trevor Harshman May 2020

Determining The Phase Of The Diurnal, Solar Thermal Tidal Wave In The Upper Atmosphere Using Nighttime Na Lidar Measurements, Trevor Harshman

Physics Capstone Projects

Solar thermal tidal waves play a critical role in the dynamics of the mesosphere and thermosphere. Obtaining measurements of the diurnal tidal wave above 100 km is difficult. This could be solved using a physics-based empirical model. To derive this model requires knowing the phase at different points along the tidal wave. In this study, I determine the phase at multiple points along the thermal diurnal tidal wave using measurements taken by a fluorescence lidar in the range of 80 to 100 km. A simple calculation of the phase based on the zeroes and extrema of the wave is demonstrated.


Waves Over Mcmurdo Station, Robert Johnson May 2020

Waves Over Mcmurdo Station, Robert Johnson

Physics Capstone Projects

Atmospheric gravity waves (GWs) are generated by gravity acting on weather systems effectively causing them to oscillate. These waves can then propagate upwards into the upper atmosphere, where they are observed as they pass through glowing layers of gas, called airglow, in the upper atmosphere at approximately 87 kilometers altitude. Using Physics and a little bit of chemistry we can observe the properties of these waves with special infrared cameras. Combining the data between images taken at the same time but with different filters, we can determine the temperature amplitudes of the waves, important for improving our understanding of their …


Clustering And Classifying Geophysical Rock Properties Of The San Andreas Fault, Jared Bryan Apr 2020

Clustering And Classifying Geophysical Rock Properties Of The San Andreas Fault, Jared Bryan

Physics Capstone Projects

Borehole geophysical data provide important in situ observations for identifying and characterizing geologic and structural features in the subsurface. We perform an unsupervised classification of geophysical logs from the Sand Andreas Fault Observatory at Depth (SAFOD) borehole in order to define intervals of distinct geophysical properties. We focus on borehole geophysical data collected during Phase 3 drilling operations from 3.0-3.3 km measured depth, which encompasses the active trace of the San Andreas Fault. We use dimensionality reduction to increase the interpretability of the retrieved clusters, and we compare the performance of distance- and density-based clustering techniques. K-means clustering produces highly …


Optical Relaxation Of Defects In Kapton Caused By Irradiation, Ashlan Keeler Swainston Apr 2020

Optical Relaxation Of Defects In Kapton Caused By Irradiation, Ashlan Keeler Swainston

Physics Capstone Projects

Radiation can create atomic-scale defect states in polymers, leading to changes in their optical, electrical and mechanical properties. Recent studies of polymers have shown that these defect states are sensitive to oxygen or air exposure. It is believed that air cause the number of defect states to decrease and the polymers to revert to their original states. However, the time scale of this regression is not known. This experiment quantified the time that it takes one polymer to recover and the extent of said recovery; polymide (PI). In order to study the regression, optical transmission data were taken using a …


Understanding Noether’S Theorem By Visualizing The Lagrangian, Seth Moser Apr 2020

Understanding Noether’S Theorem By Visualizing The Lagrangian, Seth Moser

Physics Capstone Projects

By approaching Lagrangian mechanics from a graphical perspective the implications of Noether’s Theorem can be made easier to understand. Plotting the Lagrangian for classical single particle systems for one coordinate onto a position-velocity phase space along with the corresponding equations of motion can demonstrate how a system is invariant under continuous transforms in that coordinate. This invariance can be shown to be associated with a quantity in the system that’s conserved via Noether’s Theorem. The relationship between the symmetry of the system and conserved quantities can then be extended to fields. Invariance in this case is extended to include invariance …


Determing The Chaotic Nature Of Periodic Orbits, Bo Johnson Apr 2020

Determing The Chaotic Nature Of Periodic Orbits, Bo Johnson

Physics Capstone Projects

The determination of the long-term behavior of periodic orbits is considered. Different numerical techniques, including the Lyapunov Exponent, the Smaller Alignment Index, and the Generalized Alignment Index are used. Because of the discontinuous nature of the system under consideration, these methods are found to be insufficient and a more simplistic approach is utilized. The simplistic approach determines long-term behavior up to 500 periods of an orbit. It is found that in-phase periodic modes result in the largest amount of stable modes. Future work will look at the common characteristics of the in-phase modes to better understand why they are more …


Giving Students A Better Understanding Of The Concepts Behind The Coriolis Force, Ridge Cole Apr 2020

Giving Students A Better Understanding Of The Concepts Behind The Coriolis Force, Ridge Cole

Physics Capstone Projects

The Coriolis force is a physical phenomenon that has proven difficult for students to understand for centuries. While the mathematical approach to teaching this phenomenon is well known and outlined, the concepts behind this force have proven to be very elusive to students. Through the use of modern technology and new ways of presenting these concepts, we hope to give students a clear understanding of the Coriolis force in the future.