Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Photoelectric Characterization Of Bacteriorhodopsin Reconstituted In Lipid Bilayer Membrane, Joel Kamwa Dec 2014

Photoelectric Characterization Of Bacteriorhodopsin Reconstituted In Lipid Bilayer Membrane, Joel Kamwa

Graduate Theses and Dissertations

The objective of this work was to conduct basic research in biologically inspired energy conversion solutions. A photosynthetic protein (Bacteriorhodopsin) was reconstituted in a bi-layer membrane. Then, when a laser beam was shined on the membrane, the photon energy was used by the protein to pump protons across the membrane. The translocation of protons across the membrane was measured as photocurrent. For this purpose, a system was built to characterize the lipid bilayer membranes and to measure the photocurrent. The lipid bilayer membrane was characterized by its capacitance and resistance. A picoampere photocurrent was observed when Bacteriorhodopsin protein was present …


Measuring The Role Of Inhibition In Auditory Discrimination In Mice, Tazima Nur Dec 2014

Measuring The Role Of Inhibition In Auditory Discrimination In Mice, Tazima Nur

Graduate Theses and Dissertations

Understanding how inhibitory neurons affect sensory information processing in the cerebral cortex is an ongoing goal of both neuroscience and statistical physics research. In this master's thesis research project, an experimental system has been designed and built for studying how auditory dynamic range depends on inhibitory neurons, based on observations of mouse behavior. In this thesis, firstly, the topic of inhibition and information processing has been introduced. Then two papers related to inhibition and dynamic range has been reviewed in detail. One of the papers is an experimental work that analyzes the affect of inhibition on dynamic range. The other …


Atom-Based Geometrical Fingerprinting Of Conformal Two-Dimensional Materials, Mehrshad Mehboudi Dec 2014

Atom-Based Geometrical Fingerprinting Of Conformal Two-Dimensional Materials, Mehrshad Mehboudi

Graduate Theses and Dissertations

The shape of two-dimensional materials plays a significant role on their chemical and physical properties. Two-dimensional materials are basic meshes that are formed by mesh points (vertices) given by atomic positions, and connecting lines (edges) between points given by chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is a fundamental prerequisite to investigate physical and chemical properties. Hereby the use of discrete geometry to discuss the shape of two-dimensional materials is initiated.

The local geometry of a surface embodied in 3D space is determined using four invariant numbers from the metric and curvature tensors which …


The Role Of Quantum Dot Size On The Performance Of Intermediate Band Solar Cells, Najla Alnami Dec 2014

The Role Of Quantum Dot Size On The Performance Of Intermediate Band Solar Cells, Najla Alnami

Graduate Theses and Dissertations

The goal of this thesis is to understand possible mechanisms for the reported decrease of the open circuit voltage and solar cell efficiency in quantum dot (QD) intermediate band solar cells (IBSCs). More specifically, the effect of indium arsenide (InAs) QD height on the open circuit voltage and solar cell efficiency was studied in a systematic way. To explore this effect in QD solar cells, several solar cells (SCs) were grown with varying InAs QD heights. All experimental characteristics of the QD solar cells were compared to a reference structure without QDs. All samples were grown by Molecular Beam Epitaxy …


From Graphite To Graphene Via Scanning Tunneling Microscopy, Dejun Qi Aug 2014

From Graphite To Graphene Via Scanning Tunneling Microscopy, Dejun Qi

Graduate Theses and Dissertations

The primary objective of this dissertation is to study both graphene on graphite and pristine freestanding grapheme using scanning tunneling microscopy (STM) and density functional theory (DFT) simulation technique. In the experiment part, good quality tungsten metalic tips for experiment were fabricated using our newly developed tip making setup. Then a series of measurements using a technique called electrostatic-manipulation scanning tunneling microscopy (EM-STM) of our own development were performed on a highly oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale movement of the …


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Graduate Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate …


Characterizing Nanoparticle Size By Dynamic Light Scattering Technique (Dls), Marzia Zaman Aug 2014

Characterizing Nanoparticle Size By Dynamic Light Scattering Technique (Dls), Marzia Zaman

Graduate Theses and Dissertations

The Dynamic Light Scattering Technique was used to determine the size, shape and diffusion coefficient of nanoparticle. The intensity auto correlation functions of light scattered by particles in a solution were measured by using a photomultiplier tube and analyzed to get the relaxation rates for decay of intensity correlations, which correspond to the diffusion constants pertaining to the motion of the particle. In the case of nanorods there are two types of motion - translational and rotational. By dis-entangling the relaxation rates, corresponding to these two types of motion, the shape and size of nanoparticle could be characterized. These experiments, …


Optimization Of Plasmon Decay Through Scattering And Hot Electron Transfer, Drew Dejarnette Aug 2014

Optimization Of Plasmon Decay Through Scattering And Hot Electron Transfer, Drew Dejarnette

Graduate Theses and Dissertations

Light incident on metal nanoparticles induce localized surface oscillations of conductive electrons, called plasmons, which is a means to control and manipulate light. Excited plasmons decay as either thermal energy as absorbed phonons or electromagnetic energy as scattered photons. An additional decay pathway for plasmons can exist for gold nanoparticles situated on graphene. Excited plasmons can decay directly to the graphene as through hot electron transfer. This dissertation begins by computational analysis of plasmon resonance energy and bandwidth as a function of particle size, shape, and dielectric environment in addition to diffractive coupled in lattices creating a Fano resonance. With …


Discrete Strain Engineering In Graphene, Cedric Marcus Horvath May 2014

Discrete Strain Engineering In Graphene, Cedric Marcus Horvath

Graduate Theses and Dissertations

Graphene has a number of fascinating mechanical and electrical properties. Strain engineering in graphene is the attempt to control its properties with mechanical strain. Previous research in this area has come up with an approach using a continuum theory to describe the strain induced gauge fields in graphene; however, this approach is only valid for small strains (5% at most). A discrete framework is being developed in Arkansas that can more accurately calculate the deformation (electrical) and (pseudo-)magnetic gauge fields created by large strains. Computational simulations were carried out and used to get discrete atomic positions for strained, suspended graphene …


Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov May 2014

Properties Of Multiferroic Bifeo3 From First Principles, Dovran Rahmedov

Graduate Theses and Dissertations

In this dissertation, a first-principle-based approach is developed to study magnetoelectric effect in multiferoic materials. Such approach has a significant predictive power and might serve as a guide to new experimental works. As we will discuss in the course of this work, it also gives an important insight to the underlying physics behind the experimentally observed phenomena.

We start by applying our method to investigate properties of a generic multiferroic material. We observe how magnetic susceptibility of such materials evolves with temperature and compare this evolution with the characteristic behavior of magnetic susceptibility for pure magnetic systems. Then we focus …


Atomic-Scale Characterization And Manipulation Of Freestanding Graphene Using Adapted Capabilities Of A Scanning Tunneling Microscope, Steven Barber May 2014

Atomic-Scale Characterization And Manipulation Of Freestanding Graphene Using Adapted Capabilities Of A Scanning Tunneling Microscope, Steven Barber

Graduate Theses and Dissertations

Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample.

First, the acquisition of atomic-scale images of freestanding graphene …


Reconstructions At The Interface In Complex Oxide Heterostructures With Strongly Correlated Electrons, Benjamin Gray May 2014

Reconstructions At The Interface In Complex Oxide Heterostructures With Strongly Correlated Electrons, Benjamin Gray

Graduate Theses and Dissertations

Strongly correlated oxides exhibit a rich spectrum of closely competing orders near the localized-itinerant Mott insulator transition leaving their ground states ripe with instabilities susceptible to small perturbations such as lattice distortions, variation in stoichiometry, magnetic and electric fields, etc. As the field of interfacial engineering has matured, these underlying instabilities in the electronic structure of correlated oxides continue to be leveraged to manipulate existing phases or search for emergent ones. The central theme is matching materials across the interface with disparate physical, chemical, electronic, or magnetic structure to harness interfacial reconstructions in the strongly coupled charge, spin, orbital, and …


Multi-Physics Modeling Of Terahertz And Millimeter-Wave Devices, Mohammad Ali Khorrami May 2014

Multi-Physics Modeling Of Terahertz And Millimeter-Wave Devices, Mohammad Ali Khorrami

Graduate Theses and Dissertations

In recent years, there have been substantial efforts to design and fabricate millimeter-wave and terahertz (THz) active and passive devices. Operation of microwave and photonic devices in THz range is limited due to limited maximum allowable electron velocity at semiconductor materials, and large dimensions of optical structures that prohibit their integration into nano-size packages, respectively. In order to address these issues, the application of surface plasmons (SPs) is mostly suggested to advance plasmonic devices and make this area comparable to photonics or electronics.

In this research, the feasibility of implementing THz and millimeter-wave plasmonic devices inside different material platforms including: …