Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 297

Full-Text Articles in Physics

Scattering Of Electromagnetic Radiation By Bianisotropic Spheres, Maxwell A. Wallace Jan 2024

Scattering Of Electromagnetic Radiation By Bianisotropic Spheres, Maxwell A. Wallace

Electronic Theses and Dissertations

Modern developments in materials science have led to the increased demand for the ability to control electromagnetic radiation at scales smaller than ever. One of the most important areas of research for controlling the manipulation of electromagnetic radiation, has been the studying of novel optical metamaterials, including the most general and complex form, bianisotropic metamaterials (BAMs). With modern developments in nano- engineering, paired with the advancement of more robust theoretical studies of BAMs, the demand for more novel BAM technologies has increased. With the advent of research of unbounded BAM media, as well as the recent extensions of Mie theory …


Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui Nov 2023

Quantitative, Photocurrent Multidimensional Coherent Spectroscopy, Adam Halaoui

Electronic Theses and Dissertations

Multidimensional coherent spectroscopy (MDCS) is a quickly growing field that has a lot of advantages over more conventional forms of spectroscopy. These advantages all come from the fact that MDCS allows us to get time resolved correlated emission and absorption spectra using very precisely chosen interactions between the density matrix and the excitation laser. MDCS spectra gives the researcher a lot of information that can be extracted purely through qualitative analysis. This is possible because state couplings are entirely separated on the spectra, and once we know how to read the data, we can see how carriers transport in the …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Remotely Sensed Assessment Of The Preferred Habitat Of Alexandrium Catenella In The Gulf Of Maine And The Bay Of Fundy, Andre F. Bucci Aug 2022

Remotely Sensed Assessment Of The Preferred Habitat Of Alexandrium Catenella In The Gulf Of Maine And The Bay Of Fundy, Andre F. Bucci

Electronic Theses and Dissertations

Harmful Algal Blooms (HABs) of the toxic dinoflagellate Alexandrium catenella are an annually recurring problem in the Gulf of Maine (GoM), resulting in risks to human health and substantial economic losses due to shellfish harvesting closures. The monitoring approaches in the region are restricted to real-time identification of the HABs events, when they are clearly underway and already causing deleterious effects to the environment. To fully function as an early warning system rather than an immediate response, monitoring strategies need to be focused on environmental conditions preceding A. catenella HABs. However, the current understanding of the preferred habitat for A. …


Femtosecond Pulse Compression Via Self-Phase Modulation In 1-Decanol, Jacob A. Stephen Jan 2022

Femtosecond Pulse Compression Via Self-Phase Modulation In 1-Decanol, Jacob A. Stephen

Electronic Theses and Dissertations

Ultrafast science is a branch of photonics with far reaching applications in and outside the realm of physics. Ultrashort laser pulses on the order of femtoseconds (1 fs = 1 × 10−15 s) are widely used for ultrafast science. Many lasers can produce pulses on the order of 100 fs, with state of the art, high end lasers being capable of producing pulses around 30 fs. However, many experiments require pulses around 10 fs or shorter. Femtosecond pulses are typically generated using spectral broadening via self-phase modulation, followed by dispersion compensation. The most common spectral broadening technique exploits the nonlinear …


Ultrafast Magnetic Entropy Dynamics With Time-Resolved Pump-Probe Magneto-Optical Technique., Sahar Goharshenasanesfahani Dec 2021

Ultrafast Magnetic Entropy Dynamics With Time-Resolved Pump-Probe Magneto-Optical Technique., Sahar Goharshenasanesfahani

Electronic Theses and Dissertations

It has been observed that ultrathin films, multilayers, or magnetic nanostructures indicate novel magnetic phenomena that differ profoundly from the respective bulk properties. Besides, because of the broad applications of these magnetic materials in the industry, they are an exciting research area. Hence, investigating the low-dimensional magnetic systems is one of the most active fields in experimental condensed matter physics. Magnetization dynamics can occur over a wide range of time scales (from seconds to femtoseconds). Some of these processes even occur on time scales as short as a few picoseconds (10-12s) or femtoseconds (10-15s). Measurement of …


Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace Dec 2020

Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace

Electronic Theses and Dissertations

Influenza virus, colloquially known as the flu, is an acute respiratory disease that infects several millions of individuals each year in the U.S. and kills tens of thousands of those infected. Yearly viral vaccines are widely available, however, due to the virus’s high mutation rate, their efficacy varies greatly. Due to the variability in vaccine efficiency against seasonal influenza, and the potential for even more pathogenic versions of influenza to emerge at any time, there is a high demand for a universal treatment option.

Influenza virus hijacks a variety of host cell components in order to replicate. The glycoprotein hemagglutinin …


Parametric Model Development For Heterogeneous Atmospheric Conditions, Daniel Paul Greenway Dec 2020

Parametric Model Development For Heterogeneous Atmospheric Conditions, Daniel Paul Greenway

Electronic Theses and Dissertations

No abstract provided.


Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent May 2020

Quantification Of Interactions Between Influenza Hemagglutinin And Host Cell Phosphoinositides By Super-Resolution Microscopy, Matthew T. Parent

Electronic Theses and Dissertations

The influenza viral membrane protein hemagglutinin (HA) forms dense nanoscale clusters on host cell plasma membranes (PM), but the mechanisms that direct HA clustering are not well understood. Previous studies have observed HA associated with actin rich regions of the PM, but there are no known direct interactions between HA and actin. Phosphatidylinositol 4,5-biphosphate (PIP2) is a signaling lipid in the PM which can regulate the actin cytoskeleton, and actin comets initiated by PIP2 are known to be exploited by HA to reach the PM of infected cells. PIP2 is also used by other viruses, such as HIV and Ebola, …


Phytoplankton Community Composition In The Surface Ocean: Methods For Detection Using Optical Measurements, Pigment Concentrations, And Flow Cytometry, Alison P. Chase May 2020

Phytoplankton Community Composition In The Surface Ocean: Methods For Detection Using Optical Measurements, Pigment Concentrations, And Flow Cytometry, Alison P. Chase

Electronic Theses and Dissertations

Phytoplankton are microscopic photoautotrophs living in the surface ocean waters and help support all life on earth via photosynthetic production of oxygen. Thousands of species make up the bulk phytoplankton community, and the spatial and temporal distribution of different types of phytoplankton has relevance for many ocean ecosystem questions including marine food web dynamics, and carbon flux and sequestration. Methods to detect phytoplankton community composition (PCC) on the vast scale of the global ocean require estimates of PCC from remote platforms, namely earth-observing satellites. The use of satellite data to observe and interpret PCC in the surface ocean requires significant …


High Performance Liquid Crystal Devices For Augmented Reality And Virtual Reality, Md Javed Rouf Talukder Jan 2019

High Performance Liquid Crystal Devices For Augmented Reality And Virtual Reality, Md Javed Rouf Talukder

Electronic Theses and Dissertations

See-through augmented reality and virtual reality displays are emerging due to their widespread applications in education, engineering design, medical, retail, transportation, automotive, aerospace, gaming, and entertainment. For augmented reality and virtual reality displays, high-resolution density, high luminance, fast response time and high ambient contrast ratio are critically needed. High-resolution density helps eliminate the screen-door effect, high luminance and fast response time enable low duty ratio operation, which plays a key role for suppressing image blurs. A dimmer placed in front of AR display helps to control the incident background light, which in turn improves the image contrast. In this dissertation, …


Processing Of Advanced Infrared Materials, Daniel Mcgill Jan 2019

Processing Of Advanced Infrared Materials, Daniel Mcgill

Electronic Theses and Dissertations

Infrared transparent glassy and crystalline materials often have unique and complex processing requirements but are an important class of materials for such applications as optical windows, lenses, waveplates, polarizers and beam splitters. This thesis investigates two specific materials, one amorphous and one crystalline, that are candidates for use in the short and midwave-infrared and mid and longwave infrared, respectively. It is demonstrated that an innovative uniaxial sintering process, which uses a sacrificial pressure-transmitting medium, can be used to fully densify a 70TeO2-20WO3-10La2O3 (TWL) glass powder. The characteristics of the sintered TWL glass is compared to that of a parent glass …


Broadband Mid-Infrared Frequency Combs Generated Via Frequency Division, Qitian Ru Jan 2019

Broadband Mid-Infrared Frequency Combs Generated Via Frequency Division, Qitian Ru

Electronic Theses and Dissertations

Frequency combs have revolutionized metrology and demonstrated numerous applications in science and technology. Combs operating in the mid-infrared region could be beneficial for molecular spectroscopy for several reasons. First, numerous molecules have their spectroscopic signatures in this region. Furthermore, the atmospheric window (3-5μm and 8-14μm) is located here. Additionally, a mid-infrared frequency comb could be employed as a diagnostic tool for the many components of human breath, as well as for detection of harmful gases and contaminants in the atmosphere. In this thesis, I used synchronously pumped subharmonic optical parametric oscillators (OPOs) operating at degeneracy to produce ultra-broadband outputs near …


Holographic Optical Elements For Visible Light Applications In Photo-Thermo-Refractive Glass, Fedor Kompan Jan 2019

Holographic Optical Elements For Visible Light Applications In Photo-Thermo-Refractive Glass, Fedor Kompan

Electronic Theses and Dissertations

This dissertation reports on design and fabrication of various optical elements in Photo-thermo-refractive (PTR) glass. An ability to produce complex holographic optical elements (HOEs) for the visible spectral region appears very beneficial for variety of applications, however, it is limited due to photosensitivity of the glass confined within the UV region. First two parts of this dissertation present two independent approaches to the problem of holographic recording using visible radiation. The first method involves modification of the original PTR glass rendering it photosensitive to radiation in the visible spectral region and, thus, making possible the recording of holograms in PTR …


Imaging Through Glass-Air Anderson Localizing Optical Fiber, Jian Zhao Jan 2019

Imaging Through Glass-Air Anderson Localizing Optical Fiber, Jian Zhao

Electronic Theses and Dissertations

The fiber-optic imaging system enables imaging deeply into hollow tissue tracts or organs of biological objects in a minimally invasive way, which are inaccessible to conventional microscopy. It is the key technology to visualize biological objects in biomedical research and clinical applications. The fiber-optic imaging system should be able to deliver a high-quality image to resolve the details of cell morphology in vivo and in real time with a miniaturized imaging unit. It also has to be insensitive to environmental perturbations, such as mechanical bending or temperature variations. Besides, both coherent and incoherent light sources should be compatible with the …


Fundamental Properties Of Metallic Nanolasers, William Hayenga Jan 2019

Fundamental Properties Of Metallic Nanolasers, William Hayenga

Electronic Theses and Dissertations

The last two decades have witnessed tremendous advancements in the area of nanophotonics and plasmonics, which has helped propel the development of integrated photonic sources. Of central importance to such circuits is compact, scalable, low threshold, and efficient coherent sources that can be driven at high modulation frequencies. In this regard, metallic nanolasers offer a unique platform. Their introduction has enabled confinement of light at a subwavelength scale and the ultra-small size of the modes afforded by these structures allows for cavity enhancing effects that can help facilitate thresholdless lasing and large direct modulation bandwidths. In this report, I present …


Hybrid Integration Of Second- And Third-Order Highly Nonlinear Waveguides On Silicon Substrates, Guillermo Fernando Camacho Gonzalez Jan 2019

Hybrid Integration Of Second- And Third-Order Highly Nonlinear Waveguides On Silicon Substrates, Guillermo Fernando Camacho Gonzalez

Electronic Theses and Dissertations

In order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film lithium niobate waveguides for highly efficient second-harmonic generation. Through the pursuit of hybrid integration of the two types of waveguides for applications such as on-chip self-referenced optical frequency combs, we have experimentally demonstrated fabrication integrability of …


Third-Order Optical Nonlinearities For Integrated Microwave Photonics Applications, Marcin Malinowski Jan 2019

Third-Order Optical Nonlinearities For Integrated Microwave Photonics Applications, Marcin Malinowski

Electronic Theses and Dissertations

The field of integrated photonics aims at compressing large and environmentally-sensitive optical systems to micron-sized circuits that can be mass-produced through existing semiconductor fabrication facilities. The integration of optical components on single chips is pivotal to the realization of miniature systems with high degree of complexity. Such novel photonic chips find abundant applications in optical communication, spectroscopy and signal processing. This work concentrates on harnessing nonlinear phenomena to this avail. The first part of this dissertation discusses, both from component and system level, the development of a frequency comb source with a semiconductor mode-locked laser at its heart. New nonlinear …


Non-Hermitian And Space-Time Mode Management, Nicholas Nye Jan 2019

Non-Hermitian And Space-Time Mode Management, Nicholas Nye

Electronic Theses and Dissertations

In the last few years, optics has witnessed the emergence of two fields namely metasurfaces and parity-time (PT) symmetry. Optical metasurfaces are engineered structures that provide unique responses to electromagnetic waves, absent in natural materials. On the other hand, PT symmetry has emerged from quantum mechanics, when a new class of non-Hermitian Hamiltonian quantum systems was shown to have real eigenvalues. In this work, we demonstrate how PT-symmetric diffractive structures are capable of eliminating diffraction orders in specific directions, while maintaining/enhancing the remaining orders. In the second part of this work, we emphasize on supersymmetry (SUSY) and its applications in …


Computational Imaging Systems For High-Speed, Adaptive Sensing Applications, Yangyang Sun Jan 2019

Computational Imaging Systems For High-Speed, Adaptive Sensing Applications, Yangyang Sun

Electronic Theses and Dissertations

Driven by the advances in signal processing and ubiquitous availability of high-speed low-cost computing resources over the past decade, computational imaging has seen the growing interest. Improvements on spatial, temporal, and spectral resolutions have been made with novel designs of imaging systems and optimization methods. However, there are two limitations in computational imaging. 1), Computational imaging requires full knowledge and representation of the imaging system called the forward model to reconstruct the object of interest. This limits the applications in the systems with a parameterized unknown forward model such as range imaging systems. 2), the regularization in the optimization process …


Design And Fabrication Of Scalable Multifunctional Multimaterial Fibers And Textiles, Felix Tan Jan 2019

Design And Fabrication Of Scalable Multifunctional Multimaterial Fibers And Textiles, Felix Tan

Electronic Theses and Dissertations

Multimaterial fibers eschew the traditional mono-material structures typical of traditional optical fibers for novel internal architectures that combine disparate materials with distinct optical, mechanical, and electronic properties, thereby enabling novel optoelectronic functionalities delivered in the form factor of an extended fiber. This new class of fibers developed over the past two decades is attracting interest from researchers in such different fields as optics, textiles, and biomedicine. The juxtaposition of multiple materials integrated at micro- and nanoscales in complex geometries while ensuring intimate smooth interfaces extending continuously for kilometers facilitates unique applications such as non-invasive laser surgery, self-monitoring fibers, e-textiles, and …


Stable, Highly Luminescent Perovskite-Polymer Composites For Photonics Applications, Juan He Jan 2019

Stable, Highly Luminescent Perovskite-Polymer Composites For Photonics Applications, Juan He

Electronic Theses and Dissertations

Metal halide perovskites (simplified as perovskites as below), particularly those in nanocrystal forms, have recently emerged as highly efficient, bandgap tunable photonics materials that can be easily solution processed at low cost for display, lighting or other energy conversion applications. However, the quick degradation of perovskite nanocrystals under external stresses or upon colloidal aggregations has been a major challenge for most applications where high reliability is normally required. In this thesis, we have explored a polymer swelling-deswelling microencapsulation (SDM) process that enables the dispersion, in-situ crystallization and subsequent surface passivation of perovskite nanocrystals in polymer matrices, and leads to ultrastable …


Mode Coupling In Space-Division Multiplexed Systems, Huiyuan Liu Jan 2019

Mode Coupling In Space-Division Multiplexed Systems, Huiyuan Liu

Electronic Theses and Dissertations

Even though fiber-optic communication systems have been engineered to nearly approach the Shannon capacity limit, they still cannot meet the exponentially-growing bandwidth demand of the Internet. Space-division multiplexing (SDM) has attracted considerable attention in recent years due to its potential to address this capacity crunch. In SDM, the transmission channels support more than one spatial mode, each of which can provide the same capacity as a single-mode fiber. To make SDM practical, crosstalk among modes must be effectively managed. This dissertation presents three techniques for crosstalk management for SDM. In some cases such as intra-datacenter interconnects, even though mode crosstalk …


Novel Solid State Lasers Based On Volume Bragg Gratings, Evan Hale Jan 2019

Novel Solid State Lasers Based On Volume Bragg Gratings, Evan Hale

Electronic Theses and Dissertations

Since their invention in 1960, lasers have revolutionized modern technology, and tremendous amounts of innovation and development has gone into advancing their properties and efficiencies. This dissertation reports on further innovations by presenting novel solid state laser systems based on the volume Bragg gratings (VBGs) and the newly developed holographic phase mask (HPMs) for brightness enhancement, dual wavelength operation, and mode conversion. First, a new optical element was created by pairing the HPM with two surface gratings creating an achromatic holographic phase mask. This new optical device successfully performed transverse mode conversion of multiple narrow line laser sources operating from …


Cryogenic Performance Projections For Ultra-Small Oxide-Free Vertical-Cavity Surface-Emitting Lasers, Mina Bayat Jan 2019

Cryogenic Performance Projections For Ultra-Small Oxide-Free Vertical-Cavity Surface-Emitting Lasers, Mina Bayat

Electronic Theses and Dissertations

Small-sized vertical-cavity surface-emitting laser (VCSEL) may offer very low power consumption along with high reliability for cryogenic data transfer. Cryogenic data transfer has application in supercomputers and superconducting for efficient computing and also focal plane array cameras operating at 77 K, and at the lower temperature of 4 K for data extraction from superconducting circuits. A theoretical analysis is presented for 77 K and 4 K operation based on small cavity, oxide-free VCSEL sizes of 2 to 6 µm, that have been shown to operate efficiently at room temperature. Temperature dependent operation for optimally-designed VCSELs are studied by calculating the …


Artificial Magnetism And Topological Phenomena In Optics, Midya Parto Jan 2019

Artificial Magnetism And Topological Phenomena In Optics, Midya Parto

Electronic Theses and Dissertations

Recent years have witnessed intense research activities to effectively control the flow of photons using various classes of optical structures such as photonic crystals and metamaterials. In this regard, optics has benefited from concepts in condensed matter and solid-state physics, where similar problems concerning electronic wavefunctions arise. An important example of such correspondence is associated with the photon dynamics under the effect of an artificial magnetic field. This is especially important since photons, as neutral bosons, do not inherently interact with magnetic fields. One way to mitigate this issue is to exploit magneto-optical materials. However, as is well known, using …


High-Dynamic-Range Foveated Near-Eye Display System, Guanjun Tan Jan 2019

High-Dynamic-Range Foveated Near-Eye Display System, Guanjun Tan

Electronic Theses and Dissertations

Wearable near-eye display has found widespread applications in education, gaming, entertainment, engineering, military training, and healthcare, just to name a few. However, the visual experience provided by current near-eye displays still falls short to what we can perceive in the real world. Three major challenges remain to be overcome: 1) limited dynamic range in display brightness and contrast, 2) inadequate angular resolution, and 3) vergence-accommodation conflict (VAC) issue. This dissertation is devoted to addressing these three critical issues from both display panel development and optical system design viewpoints. A high-dynamic-range (HDR) display requires both high peak brightness and excellent dark …


Computational Imaging With Limited Photon Budget, Zheyuan Zhu Jan 2019

Computational Imaging With Limited Photon Budget, Zheyuan Zhu

Electronic Theses and Dissertations

The capability of retrieving the image/signal of interest from extremely low photon flux is attractive in scientific, industrial, and medical imaging applications. Conventional imaging modalities and reconstruction algorithms rely on hundreds to thousands of photons per pixel (or per measurement) to ensure enough signal-to-noise (SNR) ratio for extracting the image/signal of interest. Unfortunately, the potential of radiation or photon damage prohibits high SNR measurements in dose-sensitive diagnosis scenarios. In addition, imaging systems utilizing inherently weak signals as contrast mechanism, such as X-ray scattering-based tomography, or attosecond pulse retrieval from the streaking trace, entail prolonged integration time to acquire hundreds of …


Optical Sensing Of Structural Dynamics In Complex Media, Jose Rafael Guzman Sepulveda Jan 2019

Optical Sensing Of Structural Dynamics In Complex Media, Jose Rafael Guzman Sepulveda

Electronic Theses and Dissertations

Quantifying the structural dynamics of complex media is challenging because of the multiple temporal and spatial scales involved. Thanks to the ability to retrieve collective dynamics noninvasively, light scattering-based approaches are often the methods of choice. This dissertation discusses specific features of dynamic light scattering that utilizes spatio-temporal coherence gating. It is demonstrated that this optical fiber-based approach can operate over a large range of optical regimes and it has a number of unique capabilities such as an effective isolation of single scattering, a large sensitivity, and a high collection efficiency. Moreover, the approach also provides means for proper ensemble …


Room Temperature Operation Of Quantum Cascade Lasers Monolithically Integrated Onto A Lattice-Mismatched Substrate, Rowel Go Aug 2018

Room Temperature Operation Of Quantum Cascade Lasers Monolithically Integrated Onto A Lattice-Mismatched Substrate, Rowel Go

Electronic Theses and Dissertations

Quantum Cascade Lasers (QCLs) are semiconductor devices that, currently, have been observed to emit radiation from ~ 2.6 μm to 250 μm (1 to 100 terahertz range of frequencies.) They have established themselves as the laser of choice for spectroscopic gas sensing in the mid-wavelength infrared (3-8 μm) and long-wavelength infrared (8-15 μm) region. In the 4-12 μm wavelength region, the highest performing QCL devices, in terms of wall-plug efficiency and continuous wave operation, are indium phosphide (InP) based. The ultimate goal is to incorporate this InP-based QCL technology to silicon (Si) substrate since most opto-electronics are Si-based. The main …