Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Self-Organized Criticality In Sheared Suspensions, L. Corté, Sharon J. Gerbode, W. Man, D. J. Pine Dec 2009

Self-Organized Criticality In Sheared Suspensions, L. Corté, Sharon J. Gerbode, W. Man, D. J. Pine

All HMC Faculty Publications and Research

Recent studies reveal that suspensions of neutrally buoyant non-Brownian particles driven by slow periodic shear can undergo a dynamical phase transition between a fluctuating irreversible steady state and an absorbing reversible state. Using a computer model, we show that such systems exhibit self-organized criticality when a finite particle sedimentation velocity vs is introduced. Under periodic shear, these systems evolve, without external intervention, towards the shear-dependent critical concentration ϕc as vs is reduced. This state is characterized by power-law distributions in the lifetime and size of fluctuating clusters. Experiments exhibit similar behavior and, as vs is reduced, …


How Much Can Guided Modes Enhance Absorption In Thin Solar Cells?, Peter N. Saeta, Vivian E. Ferry, Domenico Pacifici, Jeremy N. Munday, Harry A. Atwater Nov 2009

How Much Can Guided Modes Enhance Absorption In Thin Solar Cells?, Peter N. Saeta, Vivian E. Ferry, Domenico Pacifici, Jeremy N. Munday, Harry A. Atwater

All HMC Faculty Publications and Research

Absorption enhancement in thin metal-backed solar cells caused by dipole scatterers embedded in the absorbing layer is studied using a semi-analytical approach. The method accounts for changes in the radiation rate produced by layers above and below the dipole, and treats incoherently the subsequent scattering of light in guided modes from other dipoles. We find large absorption enhancements for strongly coupled dipoles, exceeding the ergodic limit in some configurations involving lossless dipoles. An antireflection-coated 100-nm layer of a-Si:H on Ag absorbs up to 87% of incident above-gap light. Thin layers of both strong and weak absorbers show similar strongly enhanced …


Sum Rules And Universality In Electron-Modulated Acoustic Phonon Interaction In A Free-Standing Semiconductor Plate, Shigeyasu Uno, Darryl H. Yong, Nobuya Mori Jun 2009

Sum Rules And Universality In Electron-Modulated Acoustic Phonon Interaction In A Free-Standing Semiconductor Plate, Shigeyasu Uno, Darryl H. Yong, Nobuya Mori

All HMC Faculty Publications and Research

Analysis of acoustic phonons modulated due to the surfaces of a free-standing semiconductor plate and their deformation-potential interaction with electrons are presented. The form factor for electron-modulated acoustic phonon interaction is formulated and analyzed in detail. The form factor at zero in-plane phonon wave vector satisfies sum rules regardless of electron wave function. The form factor is larger than that calculated using bulk phonons, leading to a higher scattering rate and lower electron mobility. When properly normalized, the form factors lie on a universal curve regardless of plate thickness and material.


The Initial And Final States Of Electron And Energy Transfer Processes: Diabatization As Motivated By System-Solvent Interactions, Joseph E. Subotnik, Robert J. Cave, Ryan P. Steele, Neil Shenvi Jun 2009

The Initial And Final States Of Electron And Energy Transfer Processes: Diabatization As Motivated By System-Solvent Interactions, Joseph E. Subotnik, Robert J. Cave, Ryan P. Steele, Neil Shenvi

All HMC Faculty Publications and Research

For a system which undergoes electron or energy transfer in a polar solvent, we define the diabatic states to be the initial and final states of the system, before and after the nonequilibrium transfer process. We consider two models for the system-solvent interactions: A solvent which is linearly polarized in space and a solvent which responds linearly to the system. From these models, we derive two new schemes for obtaining diabatic states from ab initio calculations of the isolated system in the absence of solvent. These algorithms resemble standard approaches for orbital localization, namely, the Boys and Edmiston–Ruedenberg (ER) formalisms. …


Generation Of Mie Size Microdroplet Aerosols With Applications In Laser-Driven Fusion Experiments, Andrew P. Higginbotham '09, O. Semonin '06, S. Bruce '08, C. Chan '08, M. Maindi '07, Thomas D. Donnelly, M. Maurer, W. Bang, I. Churina, J. Osterholz, I. Kim, A. C. Bernstein, T. Ditmire Jun 2009

Generation Of Mie Size Microdroplet Aerosols With Applications In Laser-Driven Fusion Experiments, Andrew P. Higginbotham '09, O. Semonin '06, S. Bruce '08, C. Chan '08, M. Maindi '07, Thomas D. Donnelly, M. Maurer, W. Bang, I. Churina, J. Osterholz, I. Kim, A. C. Bernstein, T. Ditmire

All HMC Faculty Publications and Research

We have developed a tunable source of Mie scale microdroplet aerosols that can be used for the generation of energetic ions. To demonstrate this potential, a terawatt Ti:Al2O3 laser focused to 2×1019 W/cm2 was used to irradiate heavy water (D2O) aerosols composed of micron-scale droplets. Energetic deuterium ions, which were generated in the laser-droplet interaction, produced deuterium-deuterium fusion with approximately 2×103 fusion neutrons measured per joule of incident laser energy.


Thermal Links For The Implementation Of An Optical Refrigerator, John Parker, David Mar, Steven Von Der Porten, John Hankinson, Kevin Byram, Chris Lee, Michael K. Mayeda, Richard C. Haskell, Qimin Yang, Scott R. Greenfield, Richard I. Epstein Jan 2009

Thermal Links For The Implementation Of An Optical Refrigerator, John Parker, David Mar, Steven Von Der Porten, John Hankinson, Kevin Byram, Chris Lee, Michael K. Mayeda, Richard C. Haskell, Qimin Yang, Scott R. Greenfield, Richard I. Epstein

All HMC Faculty Publications and Research

Optical refrigeration has been demonstrated by several groups of researchers, but the cooling elements have not been thermally linked to realistic heat loads in ways that achieve the desired temperatures. The ideal thermal link will have minimal surface area, provide complete optical isolation for the load, and possess high thermal conductivity. We have designed thermal links that minimize the absorption of fluoresced photons by the heat load using multiple mirrors and geometric shapes including a hemisphere, a kinked waveguide, and a tapered waveguide. While total link performance is dependent on additional factors, we have observed net transmission of photons with …


Stability Of Traveling Waves In Thin Liquid Films Driven By Gravity And Surfactant, Ellen Peterson, Michael Shearer, Thomas P. Witelski, Rachel Levy Jan 2009

Stability Of Traveling Waves In Thin Liquid Films Driven By Gravity And Surfactant, Ellen Peterson, Michael Shearer, Thomas P. Witelski, Rachel Levy

All HMC Faculty Publications and Research

A thin layer of fluid flowing down a solid planar surface has a free surface height described by a nonlinear PDE derived via the lubrication approximation from the Navier Stokes equations. For thin films, surface tension plays an important role both in providing a significant driving force and in smoothing the free surface. Surfactant molecules on the free surface tend to reduce surface tension, setting up gradients that modify the shape of the free surface. In earlier work [12, 13J a traveling wave was found in which the free surface undergoes three sharp transitions, or internal layers, and the surfactant …