Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

2015

Light emission

Articles 1 - 3 of 3

Full-Text Articles in Physics

Statistical Variation Of Diverse Light Emission Measurements From Bisphenol/Amine Epoxy Under Energetic Electron Bombardment, Justin Christensen Jan 2015

Statistical Variation Of Diverse Light Emission Measurements From Bisphenol/Amine Epoxy Under Energetic Electron Bombardment, Justin Christensen

Physics Capstone Projects

Dielectric materials subjected to energetic electron fluxes can emit light in several forms. We have observed three distinct types of emissions: (i) short-duration (<1 ms), high-intensity electrostatic discharge (ESD) or “arc” events; (ii) intermediate-duration, high-intensity events which begin with a bright arc followed by an exponential decay of intensity (~10 to 100 s decay constant), termed “flares”; and (iii) long-duration, low-intensity emission, or cathodoluminescence, that continues as long as the electron flux is on. These events were studied for bulk samples of bisphenol/amine epoxy, using an electron gun with varying current densities (0.3 to 5 nA/cm2) and energies (12 to 40 keV) in a high vacuum chamber. Light emitted from the samples was measured with a high-sensitivity visible to near-infrared video camera. Results of the spatial and temporal extent for each type of event are presented as well as a discussion of how absolute spectral radiance and rates for each type of event are dependent on incident electron current density, energy, and power density and on material type, temperature, and thickness. Applications of this research to spacecraft charging and light emissions are discussed.


Defects Density Of States Model Of Cathodoluminescent Intensity And Spectra Of Disordered Sio2, Amberly Evans Jensen, Jr Dennison Jan 2015

Defects Density Of States Model Of Cathodoluminescent Intensity And Spectra Of Disordered Sio2, Amberly Evans Jensen, Jr Dennison

Journal Articles

Electron beam measurements show that disordered SiO2 exhibits electron-induced luminescence, and that it varies with incident beam energy and current density, sample temperature, and wavelength. A simple model based on the electronic band structure and defect density of states—initially used to explain electron transport in highly disordered insulating materials—has been extended to predict the relative cathodoluminescent intensity and spectral radiance for disordered SiO2 as a function of these variables. Due to the large band gap of insulating SiO2, thermal excitation from the valence to conduction band is highly improbable; excitation is through collisions of the incident …


Variations In Cathodoluminescent Intensity Of Spacecraft Materials Exposed To Energetic Electron Bombardment, Justin Dekany, Justin Christensen, Jr Dennison, Amberly Evans Jensen, Gregory Wilson, Todd Schneider, Charles W. Bowers, Robert Meloy Jan 2015

Variations In Cathodoluminescent Intensity Of Spacecraft Materials Exposed To Energetic Electron Bombardment, Justin Dekany, Justin Christensen, Jr Dennison, Amberly Evans Jensen, Gregory Wilson, Todd Schneider, Charles W. Bowers, Robert Meloy

Journal Articles

Many contemporary spacecraft materials exhibit cathodoluminescence when exposed to electron flux from the space plasma environment. A quantitative, physics-based model has been developed to predict the intensity of the total glow as a function of incident electron current density and energy, temperature, and intrinsic material properties. We present a comparative study of the absolute spectral radiance for more than 20 types of dielectric and composite materials based on this model which spans more than three orders of magnitude. Variations in intensity are contrasted for different electron environments, different sizes of samples and sample sets, different testing and analysis methods, and …