Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Breakdown Analysis Of Electrostatic Discharge, Sam Hansen, Allen Andersen, Jr Dennison Oct 2014

Breakdown Analysis Of Electrostatic Discharge, Sam Hansen, Allen Andersen, Jr Dennison

Posters

Electrostatic discharge (ESD) and the associated material breakdown is the primary cause for spacecraft damage due to space environment interactions. This phenomenon occurs when the space plasma fluxes charge a craft to high voltages where insulating materials then break down. This failure allows current to flow freely through the material which; can damage or destroy onboard electrical systems. My work focuses on the effects of these breakdowns on suspect materials commonly used for electrical insulation in space. The USU Material Physics Group has performed ESD tests on hundreds of samples to date. The ESD damage sites of these samples have …


A Dual-Defect Model For Predicting Lifetimes For Polymeric Discharges From Accelerated Testing, Allen Andersen, Jr Dennison Oct 2014

A Dual-Defect Model For Predicting Lifetimes For Polymeric Discharges From Accelerated Testing, Allen Andersen, Jr Dennison

Posters

Electrostatic discharge (ESD) can cause catastrophic failures in electronic devices. Estimating the lifetime of dielectrics under prolonged high field exposure is a major design concern for applications including spacecraft, high voltage DC power transmission, and semiconductor electronics. Dielectric strengths listed in engineering handbooks are primarily based on cursory measurements with poor repeatability and tend to overestimate ESD fields in real applications. Standard measurements subject test samples to ≈500 V/s ramp rates until breakdown. We present the results of ESD studies in two prototypical polymer dielectrics using a ramp rate of ≈20 V/4s until breakdown, together with tests applying a …


Cathodoluminescence Events Coincident With Muon Detection, Kenneth Zia, Justin Dekany, Jr Dennison Oct 2014

Cathodoluminescence Events Coincident With Muon Detection, Kenneth Zia, Justin Dekany, Jr Dennison

Posters

Samples of highly disordered insulating material were irradiated with 1 keV electron beams, resulting in three forms of light emission with differing duration: arcs (<1 s duration), flares (~100 s), and cathodoluminescence (as long as beam is on). The arc and cathodoluminescence phenomena are well understood, while the flares are not. Flares were observed at intervals of ~2 per hr. This is within a factor of 2 for the expected muon crosssection at an altitude of Logan, UT (1370 m) caused by high altitude cosmic rays. Based on this suggestive evidence, we have proposed incorporation of standard muon coincidence detection apparatus into our vacuum cathode luminescence test facility. Measurements of the muon cross-section zenith angle and angle-dependence will provide calibration of the muon detector. If muon evidence coincides with the flare events, this will provide definitive evidence of the flare origin. We will discover whether a correlation between flares of charged sample are caused by transitory muons which trigger discharge and subsequent recharging during our testing of space materials.


Seasonal Variations Of Relative Neutral Densities Between 45 And 90 Km Determined From Usu Rayleigh Lidar Observations, David Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron Jun 2014

Seasonal Variations Of Relative Neutral Densities Between 45 And 90 Km Determined From Usu Rayleigh Lidar Observations, David Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron

Posters

A Rayleigh-scatter lidar operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W), part of Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected extensive data between 1993 and 2004. From the Rayleigh lidar photon-count profiles, relative densities were determined throughout the mesosphere, from 45 to 90 km. Using these relative densities three climatologies were derived, each using a different density normalization at 45 km. The first normalized the relative densities to a constant; the second to the NRL-MSISe00 empirical model which has a strong annual component; and the third to the CPC analyses …


Extremely Sensitive Rayleigh-Scatter Lidar At Usu, Vincent B. Wickwar, Leda Sox, David Barton, Matthew T. Emerick Jun 2014

Extremely Sensitive Rayleigh-Scatter Lidar At Usu, Vincent B. Wickwar, Leda Sox, David Barton, Matthew T. Emerick

Posters

Rayleigh lidar opened a portion of the atmosphere, from 30 to 90 km, to ground-based observations. Rayleigh-scatter observations were made at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993–2004 between 45 and 90 km, creating a very dense data set consisting of ~5000 hours of observations carried out over ~900 nights. The lidar had a mirror of area 0.15 m2 and a frequency-doubled Nd:YAG laser operating at 532 nm at 30 Hz at ~21 W, giving a power-aperture product (PAP) of ~3.1 Wm2.


Methods To Decrease Error In Conductivity Measurements Of Highly Disordered Materials, Phil Lundgreen, Justin Dekany, Jr Dennison Feb 2014

Methods To Decrease Error In Conductivity Measurements Of Highly Disordered Materials, Phil Lundgreen, Justin Dekany, Jr Dennison

Posters

By developing a low-noise, high-voltage battery power supply, system noise has been reduced, increasing accuracy of conductivity measurements of highly disordered insulating materials. The method involves a simple parallel plate capacitor setup with the sample sandwiched between electrodes, a voltage potential applied to one electrode, and a measurement device applied to the back electrode measuring current. Previous methods involved use of a commercial power supply with a claimed low noise and high linearity, but with a low AC output ripple. At high voltages (1000 V), however, the noise became apparent in the readings and an unacceptable uncertainty was introduced in …