Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby May 2022

Tokamak 3d Heat Load Investigations Using An Integrated Simulation Framework, Thomas Looby

Doctoral Dissertations

Reactor class nuclear fusion tokamaks will be inherently complex. Thousands of interconnected systems that span orders of magnitude in physical scale must operate cohesively for the machine to function. Because these reactor class tokamaks are all in an early design stage, it is difficult to quantify exactly how each subsystem will act within the context of the greater systems. Therefore, to predict the engineering parameters necessary to design the machine, simulation frameworks that can model individual systems as well as the interfaced systems are necessary. This dissertation outlines a novel framework developed to couple otherwise disparate computational domains together into …


Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover May 2022

Towards The Production Of A Self-Consistent Phase Space Distribution, Austin Hoover

Doctoral Dissertations

A self-consistent phase space distribution is a charged particle beam in which the electric field has a linear dependence on the particle coordinates, and in which the linearity of the electric field is conserved as the beam is transported through arbitrary linear focusing fields. These features could increase the possible beam intensity in a circular accelerator by minimizing/eliminating the space charge tune shift/spread. Additionally, the uniform density of known self-consistent distributions would be ideal for fixed-target applications. Finally, certain self-consistent distributions can be flattened by exploiting the relationships between their phases space coordinates and would therefore be useful in a …


Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …


A Study Of Systematic Uncertainties For A Photon-Like Low Energy Excess Search At Microboone, Gray Yarbrough Aug 2021

A Study Of Systematic Uncertainties For A Photon-Like Low Energy Excess Search At Microboone, Gray Yarbrough

Doctoral Dissertations

The premise of this dissertation is the study of and reduction of systematic uncertainties in the MicroBooNE experiment at the Fermi National Accelerator Laboratory. MicroBooNE is a short-baseline oscillation experiment using the innovative liquid argon time projection chamber technology to study, with unprecedented detail, neutrino interactions. The primary goal of MicroBooNE is the investigation of the MiniBooNE low energy excess (LEE) of electron neutrino events, a result which raised fundamental questions on the existence of sterile neutrinos with broad implications to the field of particle physics. The principal study of this dissertation is a study of systematics as part of …


Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini Aug 2021

Collector Probe Measurements Of Sol Impurity Accumulation And The Implications Of Sol Flows On The Accumulation Amount, Shawn Zamperini

Doctoral Dissertations

A collector probe in its simplest form is a rod inserted into a plasma so that impurities are deposited onto it. These probes are then removed and analyzed to determine the deposition profile both along the length of probe and across the width of it. This dissertation covers a series of collector probes experiments and accompanying interpretive modelling all with the main goal of providing evidence for long-hypothesized near scrape-off layer (SOL) accumulation of impurities that can lead to efficient core contamination. The structure of this dissertation is as follows. A brief outline of fusion energy and why we need …


Laser-Induced Breakdown Spectroscopy And Plasmas Containing Cyanide, Christopher Matthew Helstern Dec 2020

Laser-Induced Breakdown Spectroscopy And Plasmas Containing Cyanide, Christopher Matthew Helstern

Doctoral Dissertations

This dissertation focuses on laser-induced plasma of diatomic molecular cyanide. Optical breakdown plasma generation is produced by high-peak-power 1064 nm Q-switched nanosecond pulsed radiation. Laser-induced breakdown is performed on a 1:1 molar gas mixture of carbon dioxide and nitrogen held at a fixed pressure of 760 Torr, a 1:1 molar gas mixture of carbon dioxide and nitrogen held at a fixed pressure of 2069 Torr, and a flowing 1:1 molar gas mixture of carbon dioxide and nitrogen flowing at a rate of 100 mL per minute. Plasma shockwave measurements in laboratory air are shown to determine the shock front geometry …


Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith Dec 2020

Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith

Doctoral Dissertations

Fusion energy devices, particularly tokamaks, face the challenge of interior surface damage occurring over time from the heat flux of the high-energy plasma they generate. The ability to monitor the rate of surface modification is therefore imperative, but to date no proven technique exists for real-time erosion measurement of planar regions of interest on plasma-facing components in fusion devices. In order to fill this diagnostic gap, a digital holography system has been established at ORNL [Oak Ridge National Laboratory] for the purpose of measuring the erosion effects of plasma-material interaction in situ.

The diagnostic has been designed with the …


Exploration Of Equal Tune Transverse Coupling In The Spallation Neutron Source Accumulator Ring, Robert Edward Potts Iii Dec 2017

Exploration Of Equal Tune Transverse Coupling In The Spallation Neutron Source Accumulator Ring, Robert Edward Potts Iii

Doctoral Dissertations

The development of hadron machines is one of the main areas of focus in accelerator technology and is specifically called out as a priority in the high energy physics 10-year plan[70]. The trend for future accelerators is to move towards very high-intensity high-power accelerators to be used as proton drivers for secondary particles, target stations, and high-energy accelerators. These accelerators require lower beam losses and more stringent beam controls to maintain typical loss levels and meet specific final beam distributions.

This study focuses on the recently documented coupling resonance in the Spallation Neutron Source (SNS) accumulator ring. It was previously …


Investigation Of Langmuir Probes In Non-Maxwellian Plasma Using Particle-In-Cell (Pic) Modeling, Densu Aktas Lister May 2016

Investigation Of Langmuir Probes In Non-Maxwellian Plasma Using Particle-In-Cell (Pic) Modeling, Densu Aktas Lister

Doctoral Dissertations

This dissertation explores the development of a capability for simulating the plasma dynamics of Langmuir probes (LP) in complex plasmas where the velocity distributions are non-equilibrium and the electron energy spectrum is non-Maxwellian with respect to laboratory and space experiments. The results of this investigation are interpreted to give recommendations for design and use of LPs. This work is conducted using computational techniques to create the exact plasma conditions of the experimental testing environments. The investigations address the following topics:

  • development of a technique to model non-Maxwellian physics,
  • modification of a baseline-technique and optimization of it for this application,
  • creation …


Diatomic Carbon Measurements With Laser-Induced Breakdown Spectroscopy, Michael Jonathan Witte May 2015

Diatomic Carbon Measurements With Laser-Induced Breakdown Spectroscopy, Michael Jonathan Witte

Masters Theses

In this thesis, investigation of well-known carbon Swan spectra is of primary interest. Combustion processes and/or explosion of hydrocarbon fuels cause occurrence of the Swan band system that originates from diatomic carbon. Physical characteristics of low-temperature stars and the interstellar medium can also reveal the Swan bands. The diatomic carbon molecule shows that its lowest rotational levels are sensitive to temperature variation, and higher rotational levels are sensitive to the surrounding gas density and the radiation field. In addition, carbon is a crucial element for life and is the 4th most abundant element; therefore, it is important to ascertain accurately …


Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


Testing A Novel Technique To Improve Aluminum-26 Accelerator Mass Spectrometry Measurements For Earth Science Applications, Meghan Sarah Janzen Dec 2012

Testing A Novel Technique To Improve Aluminum-26 Accelerator Mass Spectrometry Measurements For Earth Science Applications, Meghan Sarah Janzen

Masters Theses

The measurement of cosmogenic 26Al [aluminum-26] in geological samples by accelerator mass spectrometry (AMS) is typically conducted on Al2O3 [aluminum oxide] targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- [negative atomic aluminum ions] required for measuring low-levels of 26Al. This thesis presents the performance of AlN [aluminum nitride], AlF3 [aluminum fluoride] and mixed AlN + Al2O3 as novel alternative source materials for the analysis of 26Al. A negative ion cesium sputtering source at the Holifield …


Pp And Cno-Cycle Nucleosynthesis: Kinetics And Numerical Modeling Of Competitive Fusion Processes, Matt Torrico May 2012

Pp And Cno-Cycle Nucleosynthesis: Kinetics And Numerical Modeling Of Competitive Fusion Processes, Matt Torrico

Chancellor’s Honors Program Projects

No abstract provided.