Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber Nov 2017

Design And Simulation Of A Miniature Cylindrical Mirror Auger Electron Energy Analyzer With Secondary Electron Noise Suppression, Jay A. Bieber

USF Tampa Graduate Theses and Dissertations

In the nanoscale metrology industry, there is a need for low-cost instruments, which have the ability to probe the structrure and elemental composition of thin films. This dissertation, describes the research performed to design and simulate a miniature Cylindrical Mirror Analyzer, (CMA), and Auger Electron Spectrometer, (AES). The CMA includes an integrated coaxial thermionic electron source. Electron optics simulations were performed using the Finite Element Method, (FEM), software COMSOL. To address the large Secondary Electron, (SE), noise, inherent in AES spectra, this research also included experiments to create structures in materials, which were intended to suppress SE backgound noise in …


Manipulating Electromagnetic Waves With Enhanced Functionalities Using Nonlinear And Chiral Metamaterials, Sinhara Rishi Malinda Silva Nov 2017

Manipulating Electromagnetic Waves With Enhanced Functionalities Using Nonlinear And Chiral Metamaterials, Sinhara Rishi Malinda Silva

USF Tampa Graduate Theses and Dissertations

Metamaterials are artificial structures, which periodically arranged to exhibit fascinating electromagnetic properties, not existing in nature. A great deal of research in the field of metamaterial was conducted in a linear regime, where the electromagnetic responses are independent of the external electric or magnetic fields. Unfortunately, in linear regime the desired properties of metamaterials have only been achieved within a narrow bandwidth, around a fixed frequency. Therefore, nonlinearity is introduced into metamaterials by merging meta-atoms with well-known nonlinear materials. Nonlinear metamaterials are exploited in this dissertation to introduce and develop applications in microwave frequency with broadband responses. The nonlinearity was …


Application Of Metamaterials To Rf Energy Harvesting And Infrared Photodetection, Clayton M. Fowler Nov 2017

Application Of Metamaterials To Rf Energy Harvesting And Infrared Photodetection, Clayton M. Fowler

USF Tampa Graduate Theses and Dissertations

Techniques for adapting metamaterials for the improvement of RF energy harvesting and infrared photodetection are demonstrated using experimental and computer simulation methods. Two methods for RF energy harvesting are experimentally demonstrated and supported by computer simulation. In the first method, a metamaterial perfect absorber (MPA) is made into a rectenna capable of harvesting RF energy and delivering power to a load by soldering Schottky diodes onto connected split ring resonator (SRR) structures composing the planar metasurface of the perfect absorber. The metamaterial rectenna is accompanied by a ground plane placed parallel to it, which forms a Fabry-Perot cavity between the …


Growth, Characterization, And Function Of Ferroelectric, Ferromagnetic Thin Films And Their Heterostructures, Mahesh Hordagoda Nov 2017

Growth, Characterization, And Function Of Ferroelectric, Ferromagnetic Thin Films And Their Heterostructures, Mahesh Hordagoda

USF Tampa Graduate Theses and Dissertations

With recent trends in miniaturization in the electronics sector, ferroelectrics have gained popularity due to their applications in non-volatile RAM. Taking one step further researchers are now exploring multiferroic devices that overcome the drawbacks of ferroelectric (FE) and ferromagnetic (FM) RAM’s while retaining the advantages of both. The work presented in this dissertation focuses on the growth of FE and FM thin film structures. The primary goals of this work include, (1) optimization of the parameters in the pulsed laser deposition (PLD) of FE and FM films and their heterostructures, (2) development of a structure-property relation that leads to enhancements …


Surfaces And Epitaxial Films Of Corundum-Structured Mixed Metal Oxides., Alan Richard Kramer Nov 2017

Surfaces And Epitaxial Films Of Corundum-Structured Mixed Metal Oxides., Alan Richard Kramer

USF Tampa Graduate Theses and Dissertations

Throughout the last half century of materials science, significant motivations came from, and still do, the industrial applications of these materials. Whether it is electronic, thermal, tribological or chemical in nature, the study of metals, semiconductors and insulators eventually reveals that the surface plays a significant part in the properties of these materials. Understanding metal terminations reveals often that an oxide is the stable state of the metallic surface in an ambient atmosphere and the ability to predict and control these oxides has led to significant strides forward in not just the metallic bulk but the oxide as well.

Here …


Geothermal Flux And Phreatic Speleogenesis In Gypsum, Halite, And Quartzite Rocks, Giovanni Badino Nov 2017

Geothermal Flux And Phreatic Speleogenesis In Gypsum, Halite, And Quartzite Rocks, Giovanni Badino

International Journal of Speleology

The first layers of rock underground are in thermal contact with the external atmosphere mainly through infiltrating meteoric water. This relatively cool zone absorbs rising geothermal energy, which heats the water. If the aquifer consists of gypsum, halite or quartzite, the water at those depths is usually salt-saturated, so the increase in temperature renders the water aggressive again. This in turn leads to rock dissolution and formation of phreatic conduits. This way, the geothermal flow creates caves that do not necessarily reach the surface. This paper analyzes the speed of the excavation, which, in different types of rocks, depends only …


Thermodynamic And Kinetic Aspects Of Hen Egg White Lysozyme Amyloid Assembly, Tatiana Miti Nov 2017

Thermodynamic And Kinetic Aspects Of Hen Egg White Lysozyme Amyloid Assembly, Tatiana Miti

USF Tampa Graduate Theses and Dissertations

Deposition of protein fibers with a characteristic cross-β sheet structure is the molecular marker associated with human disorders ranging from Alzheimer's disease to type II diabetes and spongiform encephalopathy. Given the large number of non-disease related proteins and peptides that have been shown to form amyloid fibrils in vitro, it has been suggested that amyloid fibril formation represents a generic protein phase transition. In the last two decades it has become clear that the same protein/peptide can assemble into distinct morphologically and structurally amyloid aggregates depending on the solution conditions. Moreover, recent studies have shown that the early stage, oligomeric …


Towards Violation Of Classical Inequalities Using Quantum Dot Resonance Fluorescence, Manoj Peiris Jul 2017

Towards Violation Of Classical Inequalities Using Quantum Dot Resonance Fluorescence, Manoj Peiris

USF Tampa Graduate Theses and Dissertations

Self-assembled semiconductor quantum dots have attracted considerable interest recently, ranging from fundamental studies of quantum optics to advanced applications in the field of quantum information science. With their atom-like properties, quantum dot based nanophotonic devices may also substantially contribute to the development of quantum computers. This work presents experimental progress towards the understanding of light-matter interactions that occur beyond well-understood monochromatic resonant light scattering processes in semiconductor quantum dots. First, we report measurements of resonance fluorescence under bichromatic laser excitation. With the inclusion of a second laser, both first-order and second-order correlation functions are substantially altered. Under these conditions, the …


Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark Jun 2017

Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark

USF Tampa Graduate Theses and Dissertations

Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for …


Evolution, Ecology, And Disparities: Constructing Stature, Immune Functioning, And Reproduction In Brazilian Quilombo, And United States, Women, Anna C. Rivara Apr 2017

Evolution, Ecology, And Disparities: Constructing Stature, Immune Functioning, And Reproduction In Brazilian Quilombo, And United States, Women, Anna C. Rivara

USF Tampa Graduate Theses and Dissertations

The purpose of this dissertation is to test how growth, reproduction, and immune functioning interact in two populations of adult women residing in vastly different socio-economic and ecological environments, the Kalunga quilombo in Brazil, and the United States of America. The presence of life history trade-offs was tested to determine how the different envirnonments, and socio-ecological contexts of the populations were creating differential risks for health and reproductive outcomes, and life history trade-offs.

I hypothesized that the Kalunga people, living in very difficult and harsh conditions, would experience greater amounts of, and more severe, life history trade-offs than the U.S. …


Complex Electric-Field Induced Phenomena In Ferroelectric/Antiferroelectric Nanowires, Ryan Christopher Herchig Apr 2017

Complex Electric-Field Induced Phenomena In Ferroelectric/Antiferroelectric Nanowires, Ryan Christopher Herchig

USF Tampa Graduate Theses and Dissertations

Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies …


Coherent Response Of Two Dimensional Electron Gas Probed By Two Dimensional Fourier Transform Spectroscopy, Jagannath Paul Apr 2017

Coherent Response Of Two Dimensional Electron Gas Probed By Two Dimensional Fourier Transform Spectroscopy, Jagannath Paul

USF Tampa Graduate Theses and Dissertations

Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is …


Interference Of Light In Multilayer Metasurfaces: Perfect Absorber And Antireflection Coating, Khagendra Prasad Bhattarai Apr 2017

Interference Of Light In Multilayer Metasurfaces: Perfect Absorber And Antireflection Coating, Khagendra Prasad Bhattarai

USF Tampa Graduate Theses and Dissertations

We have studied several metamaterials structures with multiple layers by explaining them theoretically and verifying experimentally. The engineered structures we have designed work either as a perfect absorber or antireflection coating. The multilayer model as we call it Three Layer Model (TLM) has been developed, which gives the total reflection and transmission as a function of reflection and transmission of individual layers. By manipulating the amplitude and phase of the reflection and the transmission of the individual layers, we can get the required functionality of the optoelectronic devices. To get zero reflection in the both perfect absorber and the antireflection …