Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla Jun 2010

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla

Shireen Adenwalla Papers

Neutron detection in thick boron carbide(BC)/n-type Si heterojunction diodes shows a threefold increase in efficiency with applied bias and longer time constants. The improved efficiencies resulting from long time constants have been conclusively linked to the much longer charge collection times in the BC layer. Neutron detection signals from both the p-type BC layer and the n-type Si side of the heterojunction diode are observed, with comparable efficiencies. Collectively, these provide strong evidence that the semiconducting BC layer plays an active role in neutron detection, both in neutron capture and in charge generation and collection.


Unusual Resistance Hysteresis In N-Layer Graphene Field Effect Transistors Fabricated On Ferroelectric Pb(Zr0.2ti0.8)O3, X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, J. Zhu Jan 2010

Unusual Resistance Hysteresis In N-Layer Graphene Field Effect Transistors Fabricated On Ferroelectric Pb(Zr0.2ti0.8)O3, X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, J. Zhu

Xia Hong Publications

We have fabricated n-layer graphene field effect transistors on epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) thin films. At low gate voltages, PZT behaves as a high-k dielectric with k up to 100. An unusual resistance hysteresis occurs in gate sweeps at high voltages, with its direction opposite to that expected from the polarization switching of PZT. The relaxation of the metastable state is thermally activated, with an activation barrier of 50–110 meV and a time constant of 6 h at 300 K. We attribute its origin to the slow dissociation/recombination dynamics of water molecules adsorbed at …


Deposition Of High-Quality Hfo2 On Graphene And The Effect Of Remote Oxide Phonon Scattering, K. Zou, X. Hong, D. Keefer, J. Zhu Jan 2010

Deposition Of High-Quality Hfo2 On Graphene And The Effect Of Remote Oxide Phonon Scattering, K. Zou, X. Hong, D. Keefer, J. Zhu

Xia Hong Publications

We demonstrate atomic layer deposition of high-quality dielectric HfO2 films on graphene and determine the magnitude of remote oxide surface phonon scattering in dual-oxide structures. The carrier mobility in these HfO2-covered graphene samples reaches 20 000 cm2/Vs at low temperature. Distinct contributions to the resistivity from surface optical phonons in the SiO2 substrate and the HfO2 overlayer are isolated. At 300 K, surface phonon modes of the HfO2 film centered at 54 meV limit the mobility to approximately 20 000 cm2/Vs.


Magnetodielectric Coupling Of Infrared Phonons In Single-Crystal Cu2oseo3, K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, D. B. Tanner Jan 2010

Magnetodielectric Coupling Of Infrared Phonons In Single-Crystal Cu2oseo3, K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, D. B. Tanner

Xiaoshan Xu Papers

Reflection and transmission as a function of temperature (5–300 K) have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2OSeO3 utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (Tc~60 K). Assignments to strong far-infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature.


Dynamical Theory Calculations Of Spin-Echo Resolved Grazing-Incidence Scattering From A Diffraction Grating, Rana Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich, Roger Pynn Jan 2010

Dynamical Theory Calculations Of Spin-Echo Resolved Grazing-Incidence Scattering From A Diffraction Grating, Rana Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich, Roger Pynn

Nebraska Center for Materials and Nanoscience: Faculty Publications

Neutrons scattered or reflected from a diffraction grating are subject to a periodic potential analogous to the potential experienced by electrons within a crystal. Hence, the wavefunction of the neutrons can be expanded in terms of Bloch waves and a dynamical theory can be applied to interpret the scattering phenomenon. In this paper, a dynamical theory is used to calculate the results of neutron spin-echo resolved grazing-incidence scattering (SERGIS) from a silicon diffraction grating with a rectangular profile. The calculations are compared with SERGIS measurements made on the same grating at two neutron sources: a pulsed source and a continuous …


Lattice Dynamical Probe Of Charge Order And Antipolar Bilayer Stacking In Lufe2o4, X. S. Xu, J. De Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, J. L. Musfeldt Jan 2010

Lattice Dynamical Probe Of Charge Order And Antipolar Bilayer Stacking In Lufe2o4, X. S. Xu, J. De Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, J. L. Musfeldt

Xiaoshan Xu Papers

We investigated the infrared response of LuFe2O4 through the series of charge, magnetic, and structural transitions. All vibrational modes couple strongly to the charge order, whereas the LuO zone-folding modes are also sensitive to magnetic order and structural distortion. The dramatic splitting of the LuO2 layer mode is attributed to charge-rich/poor proximity effects and its temperature dependence reveals the antipolar nature of the W layer pattern.


Optical Properties Of Quasi-Tetragonal Bifeo3 Thin Films, P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, J. L. Musfeldt Jan 2010

Optical Properties Of Quasi-Tetragonal Bifeo3 Thin Films, P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, J. L. Musfeldt

Xiaoshan Xu Papers

Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ~0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking.


Tunable Band Gap In Bi(Fe1−Xmnx)O3 Films, X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, J. L. Musfeldt Jan 2010

Tunable Band Gap In Bi(Fe1−Xmnx)O3 Films, X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, J. L. Musfeldt

Xiaoshan Xu Papers

In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1−xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.


Adsorption-Controlled Growth Of Bimno3 Films By Molecular-Beam Epitaxy, J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, D. G. Schlom Jan 2010

Adsorption-Controlled Growth Of Bimno3 Films By Molecular-Beam Epitaxy, J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, D. G. Schlom

Xiaoshan Xu Papers

We have developed the means to grow BiMnO3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with w rocking curve full width at half maximum values as narrow as 11 arc sec (0.003°). Optical absorption measurements reveal that BiMnO3 has a direct band gap of 1.1±0.1 …