Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Series

2021

Discipline
Keyword
Publication

Articles 31 - 60 of 77

Full-Text Articles in Physics

Semiclassical Theory Of Laser-Assisted Dissociative Recombination, Ilya I. Fabrikant, H. B. Ambalampitiya, I. F. Schneider May 2021

Semiclassical Theory Of Laser-Assisted Dissociative Recombination, Ilya I. Fabrikant, H. B. Ambalampitiya, I. F. Schneider

Department of Physics and Astronomy: Faculty Publications

We study the process of laser-assisted dissociative recombination of an electron with a molecular cation using a semiclassical approach. In the region outside a reaction sphere the electron motion in the combined laser and Coulomb fields is treated classically. Within the sphere the laser-field effects are neglected, and the recombination probability is obtained from quantum-mechanical cross sections calculated for the laser-free process. Specific calculations are performed for dissociative recombination of H2+ in the field of the intensity 2.09 GW/cm2 and the wavelength 22.8 μm. In the energy region above 1 meV the cross section is significantly …


Magnetism And Topological Hall Effect In Antiferromagnetic Ru2Mnsn-Based Heusler Compounds, Wenyong Zhang, Balamurugan Balasubramanian, Yang Sun, Ahsan Ullah, Ralph Skomski, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer May 2021

Magnetism And Topological Hall Effect In Antiferromagnetic Ru2Mnsn-Based Heusler Compounds, Wenyong Zhang, Balamurugan Balasubramanian, Yang Sun, Ahsan Ullah, Ralph Skomski, Rabindra Pahari, Shah R. Valloppilly, Xingzhong Li, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Heusler compounds and alloys based on them are of great recent interest because they exhibit a wide variety of spin structures, magnetic properties, and electron-transport phenomena. Their properties are tunable by alloying and we have investigated L21-ordered compound Ru2MnSn and its alloys by varying the atomic Mn:Sn composition. While antiferromagnetic ordering with a Néel temperature of 361 K was observed in Ru2MnSn, the Mn-poor Ru2Mn0.8Sn1.2 alloy exhibits properties of a diluted antiferromagnet in which there are localized regions of uncompensated Mn spins. Furthermore, a noncoplanar spin structure, evident from …


Spirals And Skyrmions In Antiferromagnetic Triangular Lattices, Wuzhang Fang, Aldo Raeliarijaona, Po-Hao Chang, Alexey Kovalev, Kirill Belashchenko May 2021

Spirals And Skyrmions In Antiferromagnetic Triangular Lattices, Wuzhang Fang, Aldo Raeliarijaona, Po-Hao Chang, Alexey Kovalev, Kirill Belashchenko

Department of Physics and Astronomy: Faculty Publications

We study realizations of spirals and skyrmions in two-dimensional antiferromagnets with a triangular lattice on an inversion-symmetry-breaking substrate. As a possible material realization, we investigate the adsorption of transition-metal atoms (Cr, Mn, Fe, or Co) on a monolayer of MoS2, WS2, or WSe2 and obtain the exchange, anisotropy, and Dzyaloshinskii-Moriya interaction parameters using first-principles calculations. Using energy minimization and parallel-tempering Monte Carlo simulations, we determine the magnetic phase diagrams for a wide range of interaction parameters. We find that skyrmion lattices can appear even with weak Dzyaloshinskii-Moriya interactions, but their stability is hindered by magnetic anisotropy. However, a weak easy …


Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko May 2021

Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko

Kirill Belashchenko Publications

The magnetic anisotropy in MgO-capped MnPt films and its voltage control are studied using first-principles calculations. Sharp variation of the magnetic anisotropy with film thickness, especially in the Pt-terminated film, suggests that it may be widely tuned by adjusting the film thickness. In thick films the linear voltage control coefficient is as large as 1.5 and -0.6 pJ/Vm for Pt-terminated and Mn-terminated interfaces, respectively. The combination of a widely tunable magnetic anisotropy energy and a large voltage-control coefficient suggest that MgO-capped MnPt films can serve as a versatile platform for magnetic memory and antiferromagnonic applications.


Robust Wavefront Dislocations Of Friedel Oscillations In Gapped Graphene, Shu-Hui Zhang, Jin Yang, Ding-Fu Shao, Zhenhua Wu, Wen Yang Apr 2021

Robust Wavefront Dislocations Of Friedel Oscillations In Gapped Graphene, Shu-Hui Zhang, Jin Yang, Ding-Fu Shao, Zhenhua Wu, Wen Yang

Department of Physics and Astronomy: Faculty Publications

Friedel oscillation is a well-known wave phenomenon which represents the oscillatory response of electron waves to imperfection. By utilizing the pseudospin-momentum locking in gapless graphene, two recent experiments demonstrate the measurement of the topological Berry phase by corresponding to the unique number of wavefront dislocations in Friedel oscillations. Here, we study the Friedel oscillations in gapped graphene, in which the pseudospin-momentum locking is broken. Unusually, the wavefront dislocations do occur like that in gapless graphene, which requires immediate verification in the current experimental condition. The number of wavefront dislocations is ascribed to the invariant pseudospin winding number in gapped and …


Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner Mar 2021

Study Of Neon Collisional Negative Ion Compound Resonance Using A Trochoidal Electron Monochromator, Will Brunner

Honors Theses

This thesis describes the experimental apparatus and procedure used to measure the excitation function of the 2p53p 3D3 state of neon. First I describe the effect on this excitation of negative ion resonances and previous experiments to measure the excitation function, as well as suggestions for future applications of such studies. Then the experimental apparatus is described in three parts. The vacuum system uses a turbomolecular pump to decrease the pressure of the chamber to as low as 4*10-9 Torr. The electron beam system incorporates a trochoidal electron monochromator to send a highly monochromatic beam …


Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn Mar 2021

Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn

Honors Theses

The Askaryan Radio Array Experiment, located near the South Pole, works to pinpoint specific instances of neutrinos from outside the solar system interacting with nucleons inside the Antarctic ice, emitting radio waves. I have taken data from the ARA stations which is presumed to be background noise and compared it to simulated data meant to look like a neutrino signal. I developed a suite of variables for discrimination between the two data sets, using a computer algorithm to generate a single output variable which can be used to distinguish noise events from signal events. I maximized this discrimination process for …


Correction To "Quantitative Study Of The Energy Changes In Voltage-Controlled Spin Crossover Molecular Thin Films" [The Journal Of Physical Chemistry Letters (2020) 11:19 (8231-8237) Doi: 10.1021/Acs.Jpclett.0c02209], Aaron Mosey, Ashley S. Dale, Guanhua Hao, Alpha N'Diaye, Peter Dowben, Ruihua Cheng Mar 2021

Correction To "Quantitative Study Of The Energy Changes In Voltage-Controlled Spin Crossover Molecular Thin Films" [The Journal Of Physical Chemistry Letters (2020) 11:19 (8231-8237) Doi: 10.1021/Acs.Jpclett.0c02209], Aaron Mosey, Ashley S. Dale, Guanhua Hao, Alpha N'Diaye, Peter Dowben, Ruihua Cheng

Peter Dowben Publications

In our recent publication, Figure 5 was published without adequate due diligence. The correct TOC Abstract graphic and Figure 5 are contained here in this correction. The correct on to off current ratios are in the range of 4 to 5, not 100 and the signal to noise ratios are far less than previously shown.


Electron Beam Dispersion Compensator Using A Wien Filter, Jackson Lederer Mar 2021

Electron Beam Dispersion Compensator Using A Wien Filter, Jackson Lederer

Honors Theses

When an electron beam travels through space, it spreads out over time which impedes the ability to work with short electron pulses in the lab. A Wien filter is a device consisting of perpendicular electric and magnetic fields which filters charged particles based on their velocities. For a specific velocity, the two forces from the two fields in the filter cancel each other out letting charges with that velocity travel straight through the filter. Charges moving at other speeds are deflected as they have a net force applied to them from the filter. If a particle is deflected from the …


Zinc Gallate Spinel Dielectric Function, Band-To-Band Transitions, And Γ-Point Effective Mass Parameters, Matthew J. Hilfiker, Megan Stokey, Rafal Korlacki, Ufuk Kilic, Zbigniew Galazka, Klaus Irmscher, Stefan Zollner, Mathias Schubert Mar 2021

Zinc Gallate Spinel Dielectric Function, Band-To-Band Transitions, And Γ-Point Effective Mass Parameters, Matthew J. Hilfiker, Megan Stokey, Rafal Korlacki, Ufuk Kilic, Zbigniew Galazka, Klaus Irmscher, Stefan Zollner, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We determine the dielectric function of the emerging ultrawide bandgap semiconductor ZnGa2O4 from the near-infrared (0.75 eV) into the vacuum ultraviolet (8.5 eV) spectral regions using spectroscopic ellipsometry on high quality single crystal substrates. We perform density functional theory calculations and discuss the band structure and the Brillouin zone Γ-point band-to-band transition energies, their transition matrix elements, and effective band mass parameters. We find an isotropic effective mass parameter (0.24me) at the bottom of the Γ-point conduction band, which equals the lowest valence band effective mass parameter at the top of the highly anisotropic …


Nonvolatile Voltage Controlled Molecular Spin‐State Switching For Memory Applications, Thilini K. Ekanayaka, Guanhua Hao, Aaron Mosey, Ashley S. Dale, Xuanyuan Jiang, Andrew J. Yost, Keshab R. Sapkota, George T. Wang, Jian Zhang, Alpha T. N’Diaye, Andrew Marshall, Ruihua Cheng, Azad Naeemi, Xiaoshan Xu, Peter Dowben Mar 2021

Nonvolatile Voltage Controlled Molecular Spin‐State Switching For Memory Applications, Thilini K. Ekanayaka, Guanhua Hao, Aaron Mosey, Ashley S. Dale, Xuanyuan Jiang, Andrew J. Yost, Keshab R. Sapkota, George T. Wang, Jian Zhang, Alpha T. N’Diaye, Andrew Marshall, Ruihua Cheng, Azad Naeemi, Xiaoshan Xu, Peter Dowben

Peter Dowben Publications

Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,20-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, …


Remote Mesoscopic Signatures Of Induced Magnetic Texture In Graphene, N. Arabchigavkani, R. Somphonsane, H. Ramamoorthy, G. He, J. Nathawat, S. Yin, B. Barut, K. He, M. D. Randle, R. Dixit, K. Sakanashi, N. Aoki, K. Zhang, L. Wang, W. N. Mei, Peter Dowben, J. Fransson, J. P. Bird Feb 2021

Remote Mesoscopic Signatures Of Induced Magnetic Texture In Graphene, N. Arabchigavkani, R. Somphonsane, H. Ramamoorthy, G. He, J. Nathawat, S. Yin, B. Barut, K. He, M. D. Randle, R. Dixit, K. Sakanashi, N. Aoki, K. Zhang, L. Wang, W. N. Mei, Peter Dowben, J. Fransson, J. P. Bird

Peter Dowben Publications

Mesoscopic conductance fluctuations are a ubiquitous signature of phase-coherent transport in small conductors, exhibiting universal character independent of system details. In this Letter, however, we demonstrate a pronounced breakdown of this universality, due to the interplay of local and remote phenomena in transport. Our experiments are performed in a graphene-based interaction-detection geometry, in which an artificial magnetic texture is induced in the graphene layer by covering a portion of it with a micromagnet. When probing conduction at some distance from this region, the strong influence of remote factors is manifested through the appearance of giant conductance fluctuations, with amplitude much …


Spin Superfluidity In Noncollinear Antiferromagnets, Bo Li, Alexey Kovalev Feb 2021

Spin Superfluidity In Noncollinear Antiferromagnets, Bo Li, Alexey Kovalev

Department of Physics and Astronomy: Faculty Publications

We explore the spin superfluid transport in exchange interaction dominated three-sublattice antiferromagnets. The system in the long-wavelength regime is described by an $SO(3)$ invariant field theory. Additional corrections from Dzyaloshinskii-Moriya interactions or anisotropies can break the symmetry; however, the system still approximately holds a $U(1)$-rotation symmetry. Thus, the power-law spatial decay signature of spin superfluidity is identified in a nonlocal-measurement setup where the spin injection is described by the generalized spin-mixing conductance. We suggest iron jarosites as promising material candidates for realizing our proposal.


Electron Interference In Atomic Ionization By Two Crossing Polarized Ultrashort Pulses, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov Feb 2021

Electron Interference In Atomic Ionization By Two Crossing Polarized Ultrashort Pulses, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov

Department of Physics and Astronomy: Faculty Publications

Formation of geometrically regular interference patterns in the photoelectron momentum distributions (PMDs) corresponding to the photoionization of atoms by two single-color, crossing ultrashort pulses is investigated both analytically and numerically. It is shown that, in contrast to the photoionization by monochromatic pulses, PMDs for the ionization by crossing and co-propagating broadband pulses are essentially different (unless both pulses are linearly polarized), namely, when one pulse is linearly polarized along the propagation direction, [], of the circularly polarized (CP) pulse, then interference maxima (minima) of the ionization probability have the form of three-dimensional single-arm regular spirals which are wound along []. …


Two-Dimensional Antiferroelectric Tunnel Junction, Jun Ding, Ding-Fu Shao, Ming Li, Li-Wei Wen, Evgeny Y. Tsymbal Feb 2021

Two-Dimensional Antiferroelectric Tunnel Junction, Jun Ding, Ding-Fu Shao, Ming Li, Li-Wei Wen, Evgeny Y. Tsymbal

Department of Physics and Astronomy: Faculty Publications

Ferroelectric tunnel junctions (FTJs), which consist of two metal electrodes separated by a thin ferroelectric barrier, have recently aroused significant interest for technological applications as nanoscale resistive switching devices. So far, most existing FTJs have been based on perovskite-oxide barrier layers. The recent discovery of the two-dimensional (2D) van der Waals ferroelectric materials opens a new route to realize tunnel junctions with new functionalities and nm-scale dimensions. Because of the weak coupling between the atomic layers in these materials, the relative dipole alignment between them can be controlled by applied voltage. This allows transitions between ferroelectric and antiferroelectric orderings, resulting …


Magnetic And Electron Transport Properties Of Co2Si Nanomagnets, Balamurugan Balasubramanian, Tom A. George, Priyanka Manchanda, Rabindra Pahari, Ahsan Ullah, Ralph Skomski, David J. Sellmyer Feb 2021

Magnetic And Electron Transport Properties Of Co2Si Nanomagnets, Balamurugan Balasubramanian, Tom A. George, Priyanka Manchanda, Rabindra Pahari, Ahsan Ullah, Ralph Skomski, David J. Sellmyer

Department of Physics and Astronomy: Faculty Publications

Magnetotransport and ferromagnetism in thin films of Co2Si nanoclusters are investigated experimentally and theoretically. The nanoclusters are fabricated by an inert-gas condensation-type cluster-deposition method and have an average size of 11.3 nm. Unlike the bulk Co2Si that exhibits a very weak net magnetic moment only below 10 K, the nanoclusters exhibit room-temperature ferromagnetism with a substantial saturation magnetization. Key features of the system are its closeness to the Stoner transition, magnetic moments induced by spin polarization starting from surface atoms, and nonuniaxial anisotropy associated with the orthorhombic crystal structure of Co2Si. A method is …


Plasmonic Waveguides To Enhance Quantum Electrodynamic Phenomena At The Nanoscale, Ying Li, Christos Argyropoulos Feb 2021

Plasmonic Waveguides To Enhance Quantum Electrodynamic Phenomena At The Nanoscale, Ying Li, Christos Argyropoulos

Department of Electrical and Computer Engineering: Faculty Publications

The emerging field of plasmonics can lead to enhanced light-matter interactions at extremely nanoscale regions. Plasmonic (metallic) devices promise to efficiently control both classical and quantum properties of light. Plasmonic waveguides are usually used to excite confined electromagnetic modes at the nanoscale that can strongly interact with matter. The analysis of these nanowaveguides exhibits similarities with their low frequency microwave counterparts. In this article, we review ways to study plasmonic nanostructures coupled to quantum optical emitters from a classical electromagnetic perspective. These quantum emitters are mainly used to generate single-photon quantum light that can be employed as a quantum bit …


Anisotropic Dielectric Functions, Band-To-Band Transitions, And Critical Points In Α-Ga2O3, Matthew J. Hilfiker, Rafal Korlacki, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Ufuk Kilic, Megan Stokey, Mathias Schubert Feb 2021

Anisotropic Dielectric Functions, Band-To-Band Transitions, And Critical Points In Α-Ga2O3, Matthew J. Hilfiker, Rafal Korlacki, Riena Jinno, Yongjin Cho, Huili Grace Xing, Debdeep Jena, Ufuk Kilic, Megan Stokey, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We use a combined generalized spectroscopic ellipsometry and density functional theory approach to determine and analyze the anisotropic dielectric functions of an α-Ga2O3 thin film. The sample is grown epitaxially by plasma-assisted molecular beam epitaxy on m-plane sapphire. Generalized spectroscopic ellipsometry data from multiple sample azimuths in the spectral range from 0.73 eV to 8.75 eV are simultaneously analyzed. Density functional theory is used to calculate the valence and conduction band structure. We identify, for the indirect-bandgap material, two direct band-to-band transitions with M0-type van Hove singularities for polarization perpendicular to the c axis, …


Chiral Spin Textures In Amorphous Iron–Germanium Thick Films, Robert Streubel, D. Simca Bouma, Frank Bruni, Xiaoqian Chen, Peter Ercius, Jim Ciston, Alpha T. N'Diaye, Sujoy Roy, Steve D. Kevan, Peter Fischer, Frances Hellman Feb 2021

Chiral Spin Textures In Amorphous Iron–Germanium Thick Films, Robert Streubel, D. Simca Bouma, Frank Bruni, Xiaoqian Chen, Peter Ercius, Jim Ciston, Alpha T. N'Diaye, Sujoy Roy, Steve D. Kevan, Peter Fischer, Frances Hellman

Robert Streubel Papers

Topological solitary fields, such as magnetic and polar skyrmions, are envisioned to revolutionize microelectronics. These configurations have been stabilized in solid-state materials with a global inversion symmetry breaking, which translates in magnetic materials into a vector spin exchange known as the Dzyaloshinskii–Moriya interaction (DMI), as well as spin chirality selection and isotropic solitons. This work reports experimental evidence of 3D chiral spin textures, such as helical spins and skyrmions with different chirality and topological charge, stabilized in amorphous Fe–Ge thick films. These results demonstrate that structurally and chemically disordered materials with a random DMI can resemble inversion symmetry broken systems …


Ferromagnetic Liquid Droplets With Adjustable Magnetic Properties, Xuefei Wu, Robert Streubel, Xubo Liu, Paul Y. Kim, Yu Chai, Qin Hu, Dong Wang, Peter Fischer, Thomas P. Russell Feb 2021

Ferromagnetic Liquid Droplets With Adjustable Magnetic Properties, Xuefei Wu, Robert Streubel, Xubo Liu, Paul Y. Kim, Yu Chai, Qin Hu, Dong Wang, Peter Fischer, Thomas P. Russell

Department of Physics and Astronomy: Faculty Publications

The assembly and jamming of magnetic nanoparticles (NPs) at liquid–liquid interfaces is a versatile platform to endow structured liquid droplets with a magnetization, i.e., producing ferromagnetic liquid droplets (FMLDs). Here, we use hydrodynamics experiments to probe how the magnetization of FMLDs and their response to external stimuli can be tuned by chemical, structural, and magnetic means. The remanent magnetization stems from magnetic NPs jammed at the liquid–liquid interface and dispersed NPs magneto-statically coupled to the interface. FMLDs form even at low concentrations of magnetic NPs when mixing nonmagnetic and magnetic NPs, since the underlying magnetic dipole-driven clustering of magnetic NP-surfactants …


Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, S. Adenwalla Jan 2021

Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, S. Adenwalla

Department of Physics and Astronomy: Faculty Publications

Domain walls in magnetic thin films are being explored for memory applications and the speed at which they move has acquired increasing importance. Magnetic fields and currents have been shown to drive domain walls with speeds exceeding 500 m/s. We investigate another approach to increase domain wall velocities, using high frequency surface acoustic waves to create standing strain waves in a 3 micron wide strip of magnetic film with perpendicular anisotropy. Our measurements, at a resonant frequency of 248.8 MHz, indicate that domain wall velocities increase substantially, even at relatively low applied voltages. Our findings suggest that the strain wave …


Structure Retrieval In Liquid-Phase Electron Scattering, Jie Yang, J. Pedro F. Nunes, Kathryn Ledbetter, Elisa Biasin, Martin Centurion, Zhijiang Chen, Amy A. Cordones, Christopher Crissman, Daniel P. Deponte, Siegfried H. Glenzer, Ming Fu Lin, Mianzhen Mo, Conor D. Rankine, Xiaozhe Shen, Thomas J.A. Wolf, Xijie Wang Jan 2021

Structure Retrieval In Liquid-Phase Electron Scattering, Jie Yang, J. Pedro F. Nunes, Kathryn Ledbetter, Elisa Biasin, Martin Centurion, Zhijiang Chen, Amy A. Cordones, Christopher Crissman, Daniel P. Deponte, Siegfried H. Glenzer, Ming Fu Lin, Mianzhen Mo, Conor D. Rankine, Xiaozhe Shen, Thomas J.A. Wolf, Xijie Wang

Martin Centurion Publications

Electron scattering on liquid samples has been enabled recently by the development of ultrathin liquid sheet technologies. The data treatment of liquid-phase electron scattering has been mostly reliant on methodologies developed for gas electron diffraction, in which theoretical inputs and empirical fittings are often needed to account for the atomic form factor and remove the inelastic scattering background. In this work, we present an alternative data treatment method that is able to retrieve the radial distribution of all the charged particle pairs without the need of either theoretical inputs or empirical fittings. The merits of this new method are illustrated …


Integrating Out New Fermions At One Loop, Andrei Angelescu, Peisi Huang Jan 2021

Integrating Out New Fermions At One Loop, Andrei Angelescu, Peisi Huang

Department of Physics and Astronomy: Faculty Publications

We present the fermionic universal one-loop effective action obtained by integrating out heavy vector-like fermions at one loop using functional techniques. Even though previous approaches are able to handle integrating out heavy fermions with non-chiral interactions, i.e. vanishing γ5 interaction terms, the computations proceed in a tedious manner that obscures a physical interpretation. We show how directly tackling the fermionic functional determinant not only allows for a much simpler and transparent computation, but is also able to account for chiral interaction terms in a simple, algorithmic way. Finally, we apply the obtained results to integrate out at one loop …


Temporal Coherent Control Of Resonant Two-Photon Double Ionization Of The Hydrogen Molecule Via Doubly Excited States, Jean Marcel Ngoko Djiokap, Anthony F. Starace Jan 2021

Temporal Coherent Control Of Resonant Two-Photon Double Ionization Of The Hydrogen Molecule Via Doubly Excited States, Jean Marcel Ngoko Djiokap, Anthony F. Starace

Anthony F. Starace Publications

We use time-delayed, counter-rotating, circularly polarized few-cycle attosecond nonoverlapping pulses to study the temporal coherent control of the resonant process of two-photon double ionization (TPDI) of hydrogen molecule via doubly excited states for pulse propagation direction along ˆk either parallel or perpendicular to the molecular axis ˆR. For ˆk ‖ ˆR and a pulse carrier frequency of 36 eV resonantly populating the Q2 1∏ + u (1) doubly excited state as well as other 1∏ + u doubly excited states, we find that the indirect ionization pathway through these doubly excited states changes the character of the kinematical vortex-shaped …


Defects In Ferroelectric Hfo2, A. Chouprik, D. Negrov, E. Y. Tsymbal, A. Zenkevich Jan 2021

Defects In Ferroelectric Hfo2, A. Chouprik, D. Negrov, E. Y. Tsymbal, A. Zenkevich

Evgeny Tsymbal Publications

No abstract provided.


Magnetism In Curved Geometries, R. Streubel, E. Y. Tsymbal, P. Fischer Jan 2021

Magnetism In Curved Geometries, R. Streubel, E. Y. Tsymbal, P. Fischer

Evgeny Tsymbal Publications

No abstract provided.


Spin-Orbit Dependence Of Anisotropic Current-Induced Spin Polarization, L. L. Tao And Evgeny Y. Tsymbal Jan 2021

Spin-Orbit Dependence Of Anisotropic Current-Induced Spin Polarization, L. L. Tao And Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

No abstract provided.


Magnetoelectric Coupling At The Ni/Hf0.5zr0.5o2 Interface, A. Dmitriyeva, V. Mikheev, S. Zarubin, A. Chouprik, G. Vinai, V. Polewczyk, P. Torelli, Y. Matveyev, C. Schlueter, I. Karateev, Q. Yang, Z. Chen, L.L. Tao, E. Y. Tsymbal, And A. Zenkevich Jan 2021

Magnetoelectric Coupling At The Ni/Hf0.5zr0.5o2 Interface, A. Dmitriyeva, V. Mikheev, S. Zarubin, A. Chouprik, G. Vinai, V. Polewczyk, P. Torelli, Y. Matveyev, C. Schlueter, I. Karateev, Q. Yang, Z. Chen, L.L. Tao, E. Y. Tsymbal, And A. Zenkevich

Evgeny Tsymbal Publications

No abstract provided.


Giant Transport Anisotropy In Res2 Revealed Via Nanoscale Conducting Path Control, D. Li, S. Sun, Z. Xiao, J. Song, D.-F. Shao, E. Y. Tsymbal, S. Ducharme, And X. Hong Jan 2021

Giant Transport Anisotropy In Res2 Revealed Via Nanoscale Conducting Path Control, D. Li, S. Sun, Z. Xiao, J. Song, D.-F. Shao, E. Y. Tsymbal, S. Ducharme, And X. Hong

Evgeny Tsymbal Publications

No abstract provided.


Interface Engineered Electron And Hole Tunneling, R. Guo, L. Tao, M. Li, Z. Liu, W. Lin, G. Zhou, X. Chen, X. Yan, H. Tian, E. Y. Tsymbal, And J. Chen Jan 2021

Interface Engineered Electron And Hole Tunneling, R. Guo, L. Tao, M. Li, Z. Liu, W. Lin, G. Zhou, X. Chen, X. Yan, H. Tian, E. Y. Tsymbal, And J. Chen

Evgeny Tsymbal Publications

No abstract provided.