Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise Dec 2023

Characterization Of Interlayer Laser Shock Peening During Fused Filament Fabrication Of Polylactic Acid (Pla), Fabien Denise

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The field of additive manufacturing (AM) has gained a significant amount of popularity due to the increasing need for more sustainable manufacturing techniques and the adaptive development of complex product geometries. The problem is that AM parts routinely exhibit flaws or weaknesses that affect functionality or performance. Over the years, surface treatments have been developed to compensate certain flaws or weaknesses in manufactured products. Combining surface treatments with the modularity of additive manufacturing could lead to more adaptable and creative improvements of product functions in the future. The current work evaluates the feasibility of pursuing a new research axis in …


Modeling Of Metal-Ferroelectric-Insulator-Semiconductor Structures Based On Langmuir–Blodgett Copolymer Films, Timothy J. Reece, Stephen Ducharme Dec 2009

Modeling Of Metal-Ferroelectric-Insulator-Semiconductor Structures Based On Langmuir–Blodgett Copolymer Films, Timothy J. Reece, Stephen Ducharme

Stephen Ducharme Publications

Among the ferroelectric thin films used in field-effect transistor devices; the ferroelectric copolymer of polyvinylidene fluoride PVDF –CH2–CF2–, with trifluoroethylene TrFE –CHF–CF2–, has distinct advantages, including low dielectric constant, low processing temperature, low cost, and compatibility with organic semiconductors. The operation of a metal-ferroelectric insulatorsemiconductor structure with PVDF-TrFE as the ferroelectric layer was analyzed and optimized by numerical solution of the Miller and McWhorter model. A model device consisting of 20 nm PVDF/TrFE on a 10-nm-thick high-k dielectric buffer exhibits a memory window of 5 V with an operating voltage of 15 V. The operating voltage can be reduced to …


Dielectric Nanocomposites: An Inside-Out Approach To Storing Electrostatic Energy, Stephen Ducharme Sep 2009

Dielectric Nanocomposites: An Inside-Out Approach To Storing Electrostatic Energy, Stephen Ducharme

Stephen Ducharme Publications

The ability to achieve high-energy densities is the central challenge in energy storage and recovery. A promising strategy for increasing energy storage is to use highperformance dielectric materials, such as highly polarizable nanoparticles or polymers, or nanocomposites of the two. In this issue, Kim et al. use a molecular coating and clever chemistry to combine oxide nanoparticles with a polymer matrix, thereby producing an improved nanocomposite dielectric. Some advantages and challenges of using nanocomposites as improved dielectric materials are presented in this Perspective.


Polarization Switching Kinetics Of Ferroelectric Nanomesas Of Vinylidene Fluoride-Trifluoroethylene Copolymer, R. V. Gaynutdinov, O. A. Lysova, S. G. Yudin, A. L. Tolstikhina, A. L. Kholkin, V. M. Fridkin, Stephen Ducharme Jul 2009

Polarization Switching Kinetics Of Ferroelectric Nanomesas Of Vinylidene Fluoride-Trifluoroethylene Copolymer, R. V. Gaynutdinov, O. A. Lysova, S. G. Yudin, A. L. Tolstikhina, A. L. Kholkin, V. M. Fridkin, Stephen Ducharme

Stephen Ducharme Publications

The polarization switching kinetics of ferroelectric polymer nanomesas was investigated using piezoresponse force microscopy. The nanomesas were made by self-organization from Langmuir–Blodgett films of a 70% vinylidene fluoride and 30% trifluoroethylene copolymer. The polarization switching time exhibits an exponential dependence on reciprocal voltage that is consistent with nucleation-type switching dynamics.


The Effects Of Humidity On The Dielectric Response In Ferroelectric Polymer Films Made By Langmuir-Blodgett Deposition, Kristin L. Kraemer, Alexander V. Sorokin, Christina M. Othon, Stephen Ducharme, Vladimir M. Fridkin Jan 2005

The Effects Of Humidity On The Dielectric Response In Ferroelectric Polymer Films Made By Langmuir-Blodgett Deposition, Kristin L. Kraemer, Alexander V. Sorokin, Christina M. Othon, Stephen Ducharme, Vladimir M. Fridkin

Stephen Ducharme Publications

No abstract provided.


Investigation Of Ferroelectricity In Newly Synthesized Nitrile Polymer Systems, Matt Poulsen, Stephen Ducharme, Alexander V. Sorokin, Sahadeva Reddy, James M. Takacs, Y. Wen, Jihee Kim, Shireen Adenwalla Jan 2005

Investigation Of Ferroelectricity In Newly Synthesized Nitrile Polymer Systems, Matt Poulsen, Stephen Ducharme, Alexander V. Sorokin, Sahadeva Reddy, James M. Takacs, Y. Wen, Jihee Kim, Shireen Adenwalla

Stephen Ducharme Publications

The ferroelectric and piezoelectric properties of newly synthesized polymer systems have been studied. To date PVDF and its copolymers P(VDF-TrFE) have provided the bulk of the knowledge pertaining to ferroelectricity in polymers. Recently, ultrathin ferroelectric films of P(VDF-TrFE) 70:30 have been fabricated using the Langmuir-Blodgett technique [4]. In this study, various new polymers have been synthesized by chemically altering the PVDF structure. This alteration was performed in order to enhance the amphiphilic nature of the polymer and thus improve the LB film quality and control. Various chemical groups have been used to replace the electropositive hydrogen and electronegative fluorine found …


Mapping Surface Polarization In Thin Films Of The Ferroelectric Polymer P(Vdf-Trfe)., Bradley W. Peterson, Stephen Ducharme, Vladimir M. Fridkin, Timothy J. Reece Jan 2004

Mapping Surface Polarization In Thin Films Of The Ferroelectric Polymer P(Vdf-Trfe)., Bradley W. Peterson, Stephen Ducharme, Vladimir M. Fridkin, Timothy J. Reece

Stephen Ducharme Publications

Pyroelectric Scanning Microscopy (PSM) has been developed to enable mapping of surface polarization in ferroelectric thin films, in particular the copolymer polyvinylidene fluoride trifluororethylene, or P(VDF-TrFE). The Chynoweth method for dynamically measuring pyroelectric current is employed in conjunction with a micropositioning system to construct two-dimensional images of the film polarization. These images have revealed enhancement of the polarization near the edges of the film below the average coercive field, with the center's polarization increasing thereafter to meet the edge value at saturation.


Electron Irradiation Effects On Ferroelectric Copolymer Langmuir-Blodgett Films, Christina M. Othon, Stephen Ducharme Jan 2004

Electron Irradiation Effects On Ferroelectric Copolymer Langmuir-Blodgett Films, Christina M. Othon, Stephen Ducharme

Stephen Ducharme Publications

The effect of irradiation on the ferroelectric properties of Langmuir-Blodgett films of the copolymer poly(vinylidene fluoride-trifluorethelene) is investigating using 1.26 MeV electrons with dosages from 16 to 110 Mrad. Irradiation causes a systematic decrease in the phase transition temperature, coercive field and polarization of these thin films.


Ferroelectricity At Molecular Level, L. M. Blinov, A. V. Bune, Peter A. Dowben, Stephen Ducharme, Vladimir M. Fridkin, S. P. Palto, K. A. Verkhovskaya, G. V. Vizdrik, S. G. Yudin Jan 2004

Ferroelectricity At Molecular Level, L. M. Blinov, A. V. Bune, Peter A. Dowben, Stephen Ducharme, Vladimir M. Fridkin, S. P. Palto, K. A. Verkhovskaya, G. V. Vizdrik, S. G. Yudin

Stephen Ducharme Publications

he synthesis of ultrathin ferroelectric nanostructures by the Langmuir-Blodgett method and their properties are reviewed. It is shown that ferroelectricity exists in one monolayer of the ferroelectric P(VDF-TrFE) copolymer, i.e., at the molecular level. The specific characteristics of switching of ultrathin ferroelectric films are established.


Dielectric Properties Of A Ferroelectric Copolymer Langmuir–Blodgett Film, Mahantappa S. Jogad, Stephen Ducharme Aug 2002

Dielectric Properties Of A Ferroelectric Copolymer Langmuir–Blodgett Film, Mahantappa S. Jogad, Stephen Ducharme

Stephen Ducharme Publications

We report measurements of the real (epsilon prime) and imaginary (epsilon double-prime) parts of the relative complex permittivity of a Langmuir–Blodgett film of ferroelectric copolymer of vinylidene fluoride (70%) with trifluoroethylene (30%). The measurements were made in the temperature range of 35 to 125° C, and frequency range of 19 Hz to 5 MHz. The results indicate low frequency loss due to conduction and dielectric loss peak near the ferroelectric–paraelectric phase transition.