Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Gas-Phase Electron Diffraction From Laser-Aligned Molecules, Jie Yang, Martin Centurion Aug 2015

Gas-Phase Electron Diffraction From Laser-Aligned Molecules, Jie Yang, Martin Centurion

Martin Centurion Publications

Electron diffraction is a valuable tool to capture structural information from molecules in the gas phase. However, the information contained in the diffraction patterns is limited due to the random orientation of the molecules. Additional structural information can be retrieved if the molecules are aligned. Molecules can be impulsively aligned with femtosecond laser pulses, producing a transient alignment. The alignment persists only for a time on the order of a picosecond, so a pulsed electron gun is needed to record the diffraction patterns. In this manuscript, we describe the alignment process and show the changes in the diffraction pattern as …


Titanium Trisulfide Monolayer: Theoretical Prediction Of A New Direct-Gap Semiconductor With High And Anisotropic Carrier Mobility, Jun Dai, Xiao Cheng Zeng Jun 2015

Titanium Trisulfide Monolayer: Theoretical Prediction Of A New Direct-Gap Semiconductor With High And Anisotropic Carrier Mobility, Jun Dai, Xiao Cheng Zeng

Xiao Cheng Zeng Publications

A new two-dimensional (2D) layered material, namely, titanium trisulfide (TiS3) monolayer, is predicted to possess novel electronic properties. Ab initio calculations show that the perfect TiS3 monolayer is a direct-gap semiconductor with a bandgap of 1.02 eV, close to that of bulk silicon, and with high carrier mobility. More remarkably, the in-plane electron mobility of the 2D TiS3 is highly anisotropic, amounting to about 10,000 cm2 V−1 s−1 in the b direction, which is higher than that of the MoS2 monolayer, whereas the hole mobility is about two orders of magnitude lower. …