Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Central Florida

Optics

Semiconductor lasers

Articles 1 - 7 of 7

Full-Text Articles in Physics

Injection Locking Of Semiconductor Mode-Locked Lasers For Long-Term Stability Of Widely Tunable Frequency Combs, Charles Williams Jan 2013

Injection Locking Of Semiconductor Mode-Locked Lasers For Long-Term Stability Of Widely Tunable Frequency Combs, Charles Williams

Electronic Theses and Dissertations

Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall stabilization or by polarization spectroscopy. Error signals of both techniques are simulated and compared to experimentally obtained signals. Frequency combs spaced by 2.5 GHz and ~10 GHz are generated, with demonstrated optical sidemode suppression of unwanted …


Low Noise And Low Repetition Rate Semiconductor-Based Mode-Locked Lasers, Dimitrios Mandridis Jan 2011

Low Noise And Low Repetition Rate Semiconductor-Based Mode-Locked Lasers, Dimitrios Mandridis

Electronic Theses and Dissertations

The topic of this dissertation is the development of low repetition rate and low noise semiconductor-based laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analogto-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated chirped pulse laser sources. Moreover, the focus is shifted to a specific application of the linearly chirped pulses, timestretched photonic analog-to-digital conversion (TS ADC). The challenges of …


New Laser Technologies Analysis Of Quantum Dot And Lithographic Laser Diodes, Abdullah Demir Jan 2010

New Laser Technologies Analysis Of Quantum Dot And Lithographic Laser Diodes, Abdullah Demir

Electronic Theses and Dissertations

The first part of this dissertation presents a comprehensive study of quantum dot (QD) lasers threshold characteristics. The threshold temperature dependence of a QD laser diode is studied in different limits of p-doping, hole level spacing and inhomogeneous broadening. Theoretical analysis shows that the threshold current of a QD laser in the limit of uniform QDs is not temperature independent and actually more temperature sensitive than the quantum well laser. The results also explain the experimental trends of negative characteristic temperature observed in QD lasers and clarify how the carrier distribution mechanisms inside and among the QDs affect the threshold …


Low Noise, High Repetition Rate Semiconductor-Based Mode-Locked Lasers For Signal Processing And Coherent Communications, Franklyn Quinlan Jan 2008

Low Noise, High Repetition Rate Semiconductor-Based Mode-Locked Lasers For Signal Processing And Coherent Communications, Franklyn Quinlan

Electronic Theses and Dissertations

This dissertation details work on high repetition rate semiconductor mode-locked lasers. The qualities of stable pulse trains and stable optical frequency content are the focus of the work performed. First, applications of such lasers are reviewed with particular attention to applications only realizable with laser performance such as presented in this dissertation. Sources of timing jitter are also reviewed, as are techniques by which the timing jitter of a 10 GHz optical pulse train may be measured. Experimental results begin with an exploration of the consequences on the timing and amplitude jitter of the phase noise of an RF source …


Integrated Wavelength Stabilization Of Broad Area Semiconductor Lasers Using A Dual Grating Reflector, Jason O'Daniel Jan 2006

Integrated Wavelength Stabilization Of Broad Area Semiconductor Lasers Using A Dual Grating Reflector, Jason O'Daniel

Electronic Theses and Dissertations

A new fully integrated wavelength stabilization scheme based on grating-coupled surface-emitting lasers is explored. This wavelength stabilization scheme relies on two gratings. The first grating is fabricated on the p-side of the semiconductor laser in close proximity to the laser waveguide such that it couples light out of the guided mode of the waveguide into a propagating mode in the substrate; this grating is known as the grating coupler. The second grating is fabricated on the n-side of the substrate such that for the stabilization wavelength, this second grating operates in the Littrow condition and is known as the feedback …


Dispersion-Managed Breathing-Mode Semiconductor Mode-Locked Ring Laser, Bojan Resan Jan 2004

Dispersion-Managed Breathing-Mode Semiconductor Mode-Locked Ring Laser, Bojan Resan

Electronic Theses and Dissertations

A novel dispersion-managed breathing-mode semiconductor mode-locked ring laser is developed. The "breathing-mode" designation derives from the fact that intracavity pulses are alternately stretched and compressed as they circulate around the ring resonator. The pulses are stretched before entering the semiconductor gain medium to minimize the detrimental strong integrating self-phase modulation and to enable efficient pulse amplification. Subsequently compressed pulses facilitate bleaching the semiconductor saturable absorber. The intracavity pulse compression ratio is higher than 50. Down chirping when compared to up chirping allows broader mode-locked spectra and shorter pulse generation owing to temporal and spectral semiconductor gain dynamics. Pulses as short …


Monolithic Integration Of Dual Optical Elements On High Power Semicond, Laurent Vaissie Jan 2004

Monolithic Integration Of Dual Optical Elements On High Power Semicond, Laurent Vaissie

Electronic Theses and Dissertations

This dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to control the grating coupler duty cycle and shape. The near-field intensity profile outcoupled by the grating is modeled using a combination of finite-difference time domain (FDTD) analysis of the nonuniform …