Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Physics

High Flux Isolated Attosecond Pulse Generation, Yi Wu Jan 2013

High Flux Isolated Attosecond Pulse Generation, Yi Wu

Electronic Theses and Dissertations

This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory. First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest energy level ever achieved by a broadband pulse in a …


Optically Induced Forces In Scanning Probe Microscopy, Dana Kohlgraf-Owens Jan 2013

Optically Induced Forces In Scanning Probe Microscopy, Dana Kohlgraf-Owens

Electronic Theses and Dissertations

The focus of this dissertation is the study of measuring light not by energy transfer as is done with a standard photodetector such as a photographic film or charged coupled device, but rather by the forces which the light exerts on matter. In this manner we are able to replace or complement standard photodetector-based light detection techniques. One key attribute of force detection is that it permits the measurement of light over a very large range of frequencies including those which are difficult to access with standard photodetectors, such as the far IR and THz. The dissertation addresses the specific …


Ytterbium-Doped Fiber-Seeded Thin-Disk Master Oscillator Power Amplifier Laser System, Christina Willis-Ott Jan 2013

Ytterbium-Doped Fiber-Seeded Thin-Disk Master Oscillator Power Amplifier Laser System, Christina Willis-Ott

Electronic Theses and Dissertations

Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 μm ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. …


High Energy, High Average Power, Picosecond Laser Systems To Drive Few-Cycle Opcpa, Andreas Vaupel Jan 2013

High Energy, High Average Power, Picosecond Laser Systems To Drive Few-Cycle Opcpa, Andreas Vaupel

Electronic Theses and Dissertations

The invention of chirped-pulse amplification (CPA) in 1985 led to a tremendous increase in obtainable laser pulse peak intensities. Since then, several table-top, Ti:sapphire-based CPA systems exceeding the 100 TW-level with more than 10 W average power have been developed and several systems are now commercially available. Over the last decade, the complementary technology of optical parametric chirped-pulse amplification (OPCPA) has improved in its performance to a competitive level. OPCPA allows direct amplification of an almost-octave spanning bandwidth supporting few-cycle pulse durations at center wavelengths ranging from the visible to the mid-IR. The current record in peak power from a …


Pulsed Tm-Fiber Laser For Mid-Ir Generation, Pankaj Kadwani Jan 2013

Pulsed Tm-Fiber Laser For Mid-Ir Generation, Pankaj Kadwani

Electronic Theses and Dissertations

The thulium fiber laser has gained interest due to its long emission wavelength, large bandwidth (~1.8 – 2.1 µm), high efficiencies (~60 %), and high output power levels both in cw as well as pulsed regimes. Applications like remote sensing, machining, medical tissue ablation, and mid-infrared generation benefit from high peak power thulium laser sources. Pulsed thulium fiber laser systems are advancing rapidly towards higher peak power levels and are becoming the preferred sources for these applications. This dissertation work describes the development of novel nanosecond pulsed thulium fiber laser systems with record high peak power levels targeting mid-infrared generation. …


Fast-Response Liquid Crystals For Photonic And Display Applications, Jie Sun Jan 2013

Fast-Response Liquid Crystals For Photonic And Display Applications, Jie Sun

Electronic Theses and Dissertations

Liquid crystal devices are attractive for many applications such as information displays, spatial light modulators and adaptive optics, because their optical properties are electrically tunable. However, response time of liquid crystal devices is a serious concern for many applications especially for those who require large phase modulation (≥2π). This is because a thick LC layer is usually needed to achieve a large phase shift while the response time of a nematic LC is highly determined by the cell gap.


Wavelength Scale Resonant Structures For Integrated Photonic Applications, Matthew Weed Jan 2013

Wavelength Scale Resonant Structures For Integrated Photonic Applications, Matthew Weed

Electronic Theses and Dissertations

An approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled cavity systems offer the designer slow light propagation which increases photon lifetime, reduces size limitations toward on-chip integration, and offers enhanced light-matter interaction. A unique resonant structure explained by various numerical models …


The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell Jan 2013

The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell

Electronic Theses and Dissertations

Cubic Zn1-xMgxO (c-Zn1-xMgxO) thin films have opened the deep ultraviolet (DUV) spectrum to exploration by oxide optoelectronic devices. These extraordinary films are readily wet-etch-able, have inversion symmetric lattices, and are made of common and safe constituents. They also host a number of new exciting experimental and theoretical challenges. Here, the relation between growth conditions of the c-Zn1-xMgxO film and performance of fabricated ultraviolet (UV) sensors is investigated. Plasma-Enhanced Molecular Beam Epitaxy was used to grow Zn1-xMgxO thin films and formation conditions were explored by varying the growth temperature, Mg source flux, oxygen flow rate, and radio-frequency (RF) power coupled into …


Growth And Characterization Of Zno Based Semiconductor Materials And Devices, Ming Wei Jan 2013

Growth And Characterization Of Zno Based Semiconductor Materials And Devices, Ming Wei

Electronic Theses and Dissertations

Wide band gap semiconductors such as MgxZn1-xO represent an excellent choice for making optical photodetectors and emitters operating in the UV spectral region. High crystal and optical quality MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and sub-nanometer surface roughness were achieved by applying a low temperature nucleation layer. The critical growth conditions were discussed to obtain a high quality film: the sequence of Zn and O sources for initial growth of nucleation layer, growth temperatures for both ZnO nucleation and …


Optically Isotropic Liquid Crystals For Display And Photonic Applications, Jin Yan Jan 2013

Optically Isotropic Liquid Crystals For Display And Photonic Applications, Jin Yan

Electronic Theses and Dissertations

For the past few decades, tremendous progress has been made on liquid crystal display (LCD) technologies in terms of stability, resolution, contrast ratio, and viewing angle. The remaining challenge is response time. The state-of-the-art response time of a nematic liquid crystal is a few milliseconds. Faster response time is desirable in order to reduce motion blur and to realize color sequential display using RGB LEDs, which triples the optical efficiency and resolution density. Polymer-stabilized blue phase liquid crystal (PS-BPLC) is a strong candidate for achieving fast response time because its self-assembled cubic structure greatly reduces the coherence length. The response …


Inverse Problems In Multiple Light Scattering, John Broky Jan 2013

Inverse Problems In Multiple Light Scattering, John Broky

Electronic Theses and Dissertations

The interaction between coherent waves and material systems with complex optical properties is a complicated, deterministic process. Light that scatters from such media gives rise to random fields with intricate properties. It is common perception that the randomness of these complex fields is undesired and therefore is to be removed, usually through a process of ensemble averaging. However, random fields emerging from light matter interaction contain information about the properties of the medium and a thorough analysis of the scattered light allows solving specific inverse problems. Traditional attempts to solve these kinds of inverse problems tend to rely on statistical …


Fabrication Of Metallic Antenna Arrays Using Nanoimprint Lithography, Yu-Wei Lin Jan 2013

Fabrication Of Metallic Antenna Arrays Using Nanoimprint Lithography, Yu-Wei Lin

Electronic Theses and Dissertations

This Thesis describes the development of a cost-effective process for patterning nanoscale metal antenna arrays. Soft ultraviolet (UV) Nanoimprint Lithography (NIL) into bilayer resist was chosen since it enables repeatable large-scale replication of nanoscale patterns with good lift-off properties using a simple low-cost process. Nanofabrication often involves the use of Electron Beam Lithography (EBL) which enables the definition of nanoscale patterns on small sample regions, typically < 1 mm 2 . However its sequential nature makes the large scale production of nanostructured substrates using EBL cost-prohibitive. NIL is a pattern replication method that can reproduce nanoscale patterns in a parallel fashion, allowing the low-cost and rapid production of a large number of nanopatterned samples based on a single nanostructured master mold. Standard NIL replicates patterns by pressing a nanostructured hard mold into a soft resist layer on a substrate resulting in exposed substrate regions, followed by an optional Reactive Ion Etching (RIE) step and the subsequent deposition of e.g. metal onto the exposed substrate area. However, non-vertical sidewalls of the features in the resist layer resulting from an imperfect hard mold, from reflow of the resist layer, or from isotropic etching in the RIE step iii may cause imperfect lift-off. To overcome this problem, a bilayer resist method can be used. Using stacked resist layers with different etch rates, undercut structures can be obtained after the RIE step, allowing for easy lift-off even when using a mold with non-vertical sidewalls. Experiments were carried out using a nanostructured negative SiO2 master mold. Various material combinations and processing methods were explored. The negative master mold was transferred to a positive soft mold, leaving the original master mold unaltered. The soft mold consisted of a 5 m thick top Poly(methyl methacrylate) (PMMA), or Polyvinyl alcohol (PVA) layer, a 1.5 mm thick Polydimethylsiloxane (PDMS) buffer layer, and a glass supporting substrate. The soft mold was pressed into a bilayer of 300 nm PMMA and 350 nm of silicon based UV-curable resist that was spin-coated onto a glass slide, and cured using UV radiation. The imprinted patterns were etched using RIE, exposing the substrate, followed by metal deposition and lift-off. The experiments show that the use of soft molds enables successful pattern transfer even in the presence of small dust particles between the mold and the resist layer. Feature sizes down to 280 nm were replicated successfully


External Cavity Mode-Locked Semiconductor Lasers For The Generation Of Ultra-Low Noise Multi-Gigahertz Frequency Combs And Applications In Multi-Heterodyne Detection Of Arbitrary Optical Waveforms, Josue Davila-Rodriguez Jan 2013

External Cavity Mode-Locked Semiconductor Lasers For The Generation Of Ultra-Low Noise Multi-Gigahertz Frequency Combs And Applications In Multi-Heterodyne Detection Of Arbitrary Optical Waveforms, Josue Davila-Rodriguez

Electronic Theses and Dissertations

The construction and characterization of ultra-low noise semiconductor-based mode-locked lasers as frequency comb sources with multi-gigahertz combline-to-combline spacing is studied in this dissertation. Several different systems were built and characterized. The first of these systems includes a novel mode-locking mechanism based on phase modulation and periodic spectral filtering. This mode-locked laser design uses the same intra-cavity elements for both mode-locking and frequency stabilization to an intra-cavity, 1,000 Finesse, Fabry-Pérot Etalon (FPE). On a separate effort, a mode-locked laser based on a Slab-Coupled Optical Waveguide Amplifier (SCOWA) was built. This system generates a pulse-train with residual timing jitter of


Absorptive And Refractive Optical Nonlinearities In Organic Molecules And Semiconductors, Davorin Peceli Jan 2013

Absorptive And Refractive Optical Nonlinearities In Organic Molecules And Semiconductors, Davorin Peceli

Electronic Theses and Dissertations

The main purpose of this dissertation to investigate photophysical properties, third order nonlinearity and free carrier absorption and refraction in organic materials and semiconductors. Special emphasis of this dissertation is on characterization techniques of molecules with enhanced intersystem crossing rate and study of different approaches of increasing triplet quantum yield in organic molecules. Both linear and nonlinear characterization methods are described. Linear spectroscopic characterization includes absorption, fluorescence, quantum yield, anisotropy, and singletoxygen generation measurements. Nonlinear characterization, performed by picosecond and femtosecond laser systems (single and double pump-probe and Z-scan measurements), includes measurements of the triplet quantum yields, excited-state absorption, two-photon …


Injection Locking Of Semiconductor Mode-Locked Lasers For Long-Term Stability Of Widely Tunable Frequency Combs, Charles Williams Jan 2013

Injection Locking Of Semiconductor Mode-Locked Lasers For Long-Term Stability Of Widely Tunable Frequency Combs, Charles Williams

Electronic Theses and Dissertations

Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Single frequency injection locking generates widely-spaced and tunable frequency combs from these harmonically mode-locked lasers, while stabilizing the optical frequencies. The output is stabilized long-term with the help of a feedback loop utilizing either a novel technique based on Pound-Drever-Hall stabilization or by polarization spectroscopy. Error signals of both techniques are simulated and compared to experimentally obtained signals. Frequency combs spaced by 2.5 GHz and ~10 GHz are generated, with demonstrated optical sidemode suppression of unwanted …


Mode-Division Multiplexed Transmission In Few-Mode Fibers, Neng Bai Jan 2013

Mode-Division Multiplexed Transmission In Few-Mode Fibers, Neng Bai

Electronic Theses and Dissertations

As a promising candidate to break the single-mode fiber capacity limit, mode-division multiplexing (MDM) explores the spatial dimension to increase transmission capacity in fiberoptic communication. Two linear impairments, namely loss and multimode interference, present fundamental challenges to implementing MDM. In this dissertation, techniques to resolve these two issues are presented. To de-multiplex signals subject to multimode interference in MDM, Multiple-InputMultiple-Output (MIMO) processing using adaptive frequency-domain equalization (FDE) is proposed and investigated. Both simulations and experiments validate that FDE can reduce the algorithmic complexity significantly in comparison with the conventional time-domain equalization (TDE) while achieving similar performance as TDE. To further …


Properties Of High Energy Laser Light Transmission Through Large Core Optical Cables, Christopher Kennedy Jan 2013

Properties Of High Energy Laser Light Transmission Through Large Core Optical Cables, Christopher Kennedy

Electronic Theses and Dissertations

Laser induced damage is of interest in studying the transmission of large amounts of optical energy through step-index, large core multimode fibers. Optical fibers often have to be routed around objects when laser light is being transmitted between two locations which require the fiber to bend into a curve. Depending on how tight the bend is, this can result in transmission losses or even catastrophic damage when the energy density of the laser pulse exceeds the damage threshold of silica glass. The purpose of this study is to: Establish a minimum bend radius that would allow high energy (GW/cm2 ) …


Femtosecond Filament Interaction As A Probe For Molecular Alignment, Erik Mckee Jan 2013

Femtosecond Filament Interaction As A Probe For Molecular Alignment, Erik Mckee

Electronic Theses and Dissertations

Femtosecond laser filamentation is a highly nonlinear propagation mode. When a laser pulse propagates with a peak power exceeding a critical value Pcr (5 GW at 800 nm in air), the Kerr effect tends to collapse the beam until the intensity is high enough to ionize the medium, giving rise to plasma defocusing. A dynamic competition between these two effects takes place leaving a thin and weakly ionized plasma channel in the trail of the pulse. When an ultrafast laser pulse interacts with molecules, it will align them, spinning them about their axis of polarization. As the quantum rotational wave …


Metrology Of Volume Chirped Bragg Gratings Recorded In Photo-Thermo-Refractive Glass For Ultrashort Pulse Stretching And Compressing, Christopher Lantigua Jan 2013

Metrology Of Volume Chirped Bragg Gratings Recorded In Photo-Thermo-Refractive Glass For Ultrashort Pulse Stretching And Compressing, Christopher Lantigua

Electronic Theses and Dissertations

Chirped Bragg gratings (CBGs) recorded in photo-thermo-refractive (PTR) glass provide a very efficient and robust way to stretch and compress ultra-short laser pulses. These gratings offer the ability to stretch pulses from hundreds of femtoseconds, to the order of 1 ns and then recompress them. However, in order to achieve pulse stretching of this magnitude, 100 mm thick CBGs are needed. Using these CBGs to both stretch, and re-compress the pulse thus requires propagation through 200 mm of optical glass. This therefore demands perfect control of the glass homogeneity, as well as the holographic recording process of the CBG. In …


Reduced Susceptibility Of Deformation Due To Vibrational And Gravitational Effects On A Focus Variable Adaptive Lens, Victoriya Relina Jan 2013

Reduced Susceptibility Of Deformation Due To Vibrational And Gravitational Effects On A Focus Variable Adaptive Lens, Victoriya Relina

Electronic Theses and Dissertations

Orthodox optical devices, such as lenses, mirrors, and prisms, are composed of solidstate materials, which although well studied and implemented ubiquitously are severely limited in their adaptable properties. An arguably new field of adaptive optics has emerged to further expand photonic manipulation competences of optical components. Fluid-based adaptive optical components were introduced as early as 1968 [1]; such components have the ability to change the shape of their interface surface, thus allowing for a variable curvature profile. The method of manipulation varies greatly, as does the range of surface deformations. A solid-state optical component is affected by system vibration variation …


Mesoscale Light-Matter Interactions, Kyle Douglass Jan 2013

Mesoscale Light-Matter Interactions, Kyle Douglass

Electronic Theses and Dissertations

Mesoscale optical phenomena occur when light interacts with a number of different types of materials, such as biological and chemical systems and fabricated nanostructures. As a framework, mesoscale optics unifies the interpretations of the interaction of light with complex media when the outcome depends significantly upon the scale of the interaction. Most importantly, it guides the process of designing an optical sensing technique by focusing on the nature and amount of information that can be extracted from a measurement. Different aspects of mesoscale optics are addressed in this dissertation which led to the solution of a number of problems in …


Peak Power Scaling Of Nanosecond Pulses In Thulium Based Fiber Lasers, Christian Gaida Jan 2013

Peak Power Scaling Of Nanosecond Pulses In Thulium Based Fiber Lasers, Christian Gaida

Electronic Theses and Dissertations

Thulium based fiber lasers represent a promising alternative for pulse energy scaling and high peak power generation with ytterbium based systems at 1µm. Advantages of thulium arise from the operation at longer wavelengths and a large gain bandwidth (1.8-2.1µm). Nonlinear effects, such as self phase modulation, stimulated Raman scattering and stimulated Brillouin scattering generally limit peak power scaling in fiber lasers. The longer wavelength of thulium fiber lasers and large mode field areas can significantly increase the nonlinear thresholds. Compared to 1µm systems, thulium fiber lasers enable single mode guidance for two times larger mode field diameter in step index …


Development Of Laser Spectroscopy For Elemental And Molecular Analysis, Yuan Liu Jan 2013

Development Of Laser Spectroscopy For Elemental And Molecular Analysis, Yuan Liu

Electronic Theses and Dissertations

Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are still growing analytical and sensing spectroscopic techniques. They significantly reduce the time and labor cost in analysis with simplified instrumentation, and lead to minimal or no sample damage. In this dissertation, fundamental studies to improve LIBS analytical performance were performed and its fusion with Raman into one single sensor was explored. On the fundamental side, Thomson scattering was reported for the first time to simultaneously measure the electron density and temperature of laser plasmas from a solid aluminum target at atmospheric pressure. Comparison between electron and excitation temperatures brought insights into the …


Volume Phase Masks In Photo-Thermo-Refractive Glass, Marc Segall Jan 2013

Volume Phase Masks In Photo-Thermo-Refractive Glass, Marc Segall

Electronic Theses and Dissertations

In many applications such as beam shaping, mode conversion, and phase encoding it is necessary to alter the spatial phase profile of a beam via a phase mask. Conventional techniques to accomplish this either involve surface relief profiling in thin films such as PMMA or refractive index modulation in bulk photorefractive crystals such as lithium niobate. These materials have been used extensively for the past several decades and perform admirably in low power conditions. However, in high power systems these materials will be destroyed, requiring a new means of producing phase masks. In this dissertation a method for producing robust …


Phase-Locking Stability Of A Quasi-Single-Cycle Pulse, Nathan Bodnar Jan 2013

Phase-Locking Stability Of A Quasi-Single-Cycle Pulse, Nathan Bodnar

Electronic Theses and Dissertations

There is increasing interest in the generation of very short laser pulses, even down to attosecond (10-18 s) durations. Laser systems with femtosecond pulse durations are needed for these applications. For many of these applications, positioning of the maximum electric field within the pulse envelope can affect the outcome. The peak of the electric field relative to the peak of the pulse is called the Carrier Envelope Phase (CEP). Controlling the position of the electric field becomes more important when pulse duration approaches single-cycle. This thesis focuses on the stabilization of a quasi-single-cycle laser facility. Improvements to this already-established laser …


Development Of Thulium Fiber Lasers For High Average Power And High Peak Power Operation, Robert Sims Jan 2013

Development Of Thulium Fiber Lasers For High Average Power And High Peak Power Operation, Robert Sims

Electronic Theses and Dissertations

High power thulium fiber lasers are useful for a number of applications in both continuous-wave and pulsed operating regimes. The use of thulium as a dopant has recently gained interest due to its large bandwidth, possibility of high efficiency, possibility of high power and long wavelength ~1.8 – 2.1 μm. The longer emission wavelength of Tm-doped fiber lasers compared to Yb- and/or Er-doped fiber lasers creates the possibility for higher peak power operation due to the larger nonlinear thresholds and reduced nonlinear phase accumulation. One primary interest in Tm-doped fiber lasers has been to scale to high average powers; however, …


Non-Degenerate Two Photon Gain In Bulk Gallium Arsenide, Brendan Turnbull Jan 2013

Non-Degenerate Two Photon Gain In Bulk Gallium Arsenide, Brendan Turnbull

Electronic Theses and Dissertations

The purpose of this thesis is to investigate the nonlinear phenomena known as doubly-stimulated, non-degenerate two-photon emission (ND-2PE) in Gallium Arsenide (GaAs). 2PE refers to the simultaneous emission of two-photons as electrons move from the conduction band in a direct gap semiconductor to the valence band. Following the same path for describing one-photon emission (1PE) we describe 2PE as a product of the irradiance, and the negative of the loss which in this case is two-photon absorption, , the negative coming from the population inversion. We attempt to observe 2PE by using a frequency non-degenerate pump-probe experiment in which a …


Beam Deflection, Matthias Münnich, Jan 2013

Beam Deflection, Matthias Münnich,

Electronic Theses and Dissertations

In order to fully understand the third order nonlinear optical response of materials under high irradiance excitation it is necessary to study the temporal and polarization dependence of nonlinear refraction and absorption. There are several existing approaches such as Z-scan and pump-probe techniques to determine those responses. As part of this work, these approaches will be briefly outlined before presenting beam deflection, applied from photothermal beam deflection, as an alternative experimental technique to determine the nonlinear refraction with its temporal and polarization dynamics. This technique measures the angle of the probe beam deflected via the index gradient of the material …