Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

2013

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 163

Full-Text Articles in Physics

Impact Of Alkaline Doping And Reducing Conditions On Lafeo3, Geoffrey L. Beausoleil Ii Dec 2013

Impact Of Alkaline Doping And Reducing Conditions On Lafeo3, Geoffrey L. Beausoleil Ii

Geoffrey L Beausoleil II

Efficient and reliable materials for gas separation, syngas production, and hybrid nuclear power plants must be capable of reliably operating at a high-temperature range of 700-1000°C and under exposure to highly oxidizing and reducing conditions. Candidate materials for these applications include alkaline metal doped lanthanum ferrite.

In the first study, the impact of A site substitution by different alkaline metals on lanthanum ferrite (LMF, M=Ca, Sr, and Ba) was investigated. The study focused on thermal expansion near the Néel transition temperature and a magneto-elastic contribution to thermal expansion was identified for each sample. Iron oxidation, Fe3+ to Fe4+, was identified …


A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender Dec 2013

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender

Doctoral Dissertations

Prandtl’s lifting line theory expanded the Kutta-Joukowski theorem to calculate the lift and induced drag of finite wings. The circulation distribution about a real wing was represented by a superposition of infinitesimal vortex filaments. From this theory, the optimum distribution of circulation was determined to be elliptical. A consequence of this theory led to the prediction that the elliptical chord distribution on a real fixed wing would provide the elliptical circulation distribution. The author applied the same line of reasoning to lift-producing rotating cylinders in order to determine the cylindrical geometry that would theoretically produce an elliptical circulation distribution. The …


Extracting The Structure And Conformations Of Biological Entities From Large Datasets, Ali Dashti Dec 2013

Extracting The Structure And Conformations Of Biological Entities From Large Datasets, Ali Dashti

Theses and Dissertations

In biology, structure determines function, which often proceeds via changes in conformation. Efficient means for determining structure exist, but mapping conformations continue to present a serious challenge. Single-particles approaches, such as cryogenic electron microscopy (cryo-EM) and emerging "diffract & destroy" X-ray techniques are, in principle, ideally positioned to overcome these challenges. But the algorithmic ability to extract information from large heterogeneous datasets consisting of "unsorted" snapshots - each emanating from an unknown orientation of an object in an unknown conformation - remains elusive.

It is the objective of this thesis to describe and validate a powerful suite of manifold-based algorithms …


Molecular Dynamics Model Of Carbon Nanotubes In Epon 862/Detda Polymer, Guttormur Arnar Ingvason Dec 2013

Molecular Dynamics Model Of Carbon Nanotubes In Epon 862/Detda Polymer, Guttormur Arnar Ingvason

Doctoral Dissertations and Master's Theses

The aerospace industry is interested in increasing the strength while reducing the weight of carbon fiber composite materials. Adding single walled carbon nanotubes (SWCNT) to a polymer matrix can achieve that goal by improving delamination properties of the composite. Due to the complexity of polymer molecules and the curing process, few 3-D Molecular Dynamics simulations of a polymer-SWCNT composite have been run. Our model runs on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), with a COMPASS (Condensed phase Optimized Molecular Potential for Atomistic Simulations Studies) potential to represent the interactions between the atoms of the polymer and the SWCNT. This …


An Integrated Multidisciplinary Nanoscience Concentration Certificate Program For Stem Education, Karen S. Martirosyan, Mikhail M. Bouniaev, Malik Rakhmanov, Ahmed Touhami, Nazmul Islam, Davood Askari, Tarek Trad, Dmitri Litvinov, Sergey E. Lyshevski Dec 2013

An Integrated Multidisciplinary Nanoscience Concentration Certificate Program For Stem Education, Karen S. Martirosyan, Mikhail M. Bouniaev, Malik Rakhmanov, Ahmed Touhami, Nazmul Islam, Davood Askari, Tarek Trad, Dmitri Litvinov, Sergey E. Lyshevski

Physics and Astronomy Faculty Publications and Presentations

Integration of nanoscience and nanotechnology curricula into the College of Science, Mathematics, and Technology (CSMT) at the University of Texas at Brownsville (UTB) is reported. The rationale for the established multidisciplinary Nanoscience Concentration Certificate Program (NCCP) is to: (i) develop nanotechnology-relevant courses within a comprehensive Science, Engineering and Technology curriculum, and, to offer students an opportunity to graduate with a certificate in nanoscience and nanotechnology; (ii) to contribute to students' success in achieving student outcomes across all college's majors, and, improve the breath, depth and quality of science, technology, engineering and mathematics (STEM) graduates' education; (iii) through NCCP, recruit certificate- …


Criticality And Characteristic Neutronic Analysis Of A Transient-State Shockwave In A Pulsed Spherical Gaseous Uranium-Hexafluoride Reactor, Jeremiah Boles Dec 2013

Criticality And Characteristic Neutronic Analysis Of A Transient-State Shockwave In A Pulsed Spherical Gaseous Uranium-Hexafluoride Reactor, Jeremiah Boles

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this study is to analyze the theoretical criticality of a spherical uranium-hexafluoride reactor with a transient, pulsed shockwave emanating from the center of the sphere in an outward-radial direction. This novel nuclear reactor design, based upon pulsed fission in a spherical enclosure is proposed for possible use in direct energy conversion, where the energy from fission products is captured through the use of electrostatic fields or through induction. An analysis of the dynamic behavior of the shockwave in this reactor is the subject of this thesis. As a shockwave travels through a fluid medium, the characteristics of …


Design And Fabrication Of An Infrared Optical Pyrometer Asic As A Diagnostic For Shock Physics Experiments, Jared Gordon Dec 2013

Design And Fabrication Of An Infrared Optical Pyrometer Asic As A Diagnostic For Shock Physics Experiments, Jared Gordon

UNLV Theses, Dissertations, Professional Papers, and Capstones

Optical pyrometry is the sensing of thermal radiation emitted from an object using a photoconductive device to convert photons into electrons, and is an important diagnostic tool in shock physics experiments. Data obtained from an optical pyrometer can be used to generate a blackbody curve of the material prior to and after being shocked by a high speed projectile. The sensing element consists of an InGaAs photodiode array, biasing circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from the noisy dark current into a signal that can eventually be digitized. Once the circuit elements have been defined, more …


Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw Dec 2013

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmonactive nanostructures of dye-labeled protein and silver nanoparticles …


Development Of Effective Approaches To The Large-Scale Aerodynamic Testing Of Low-Rise Building, Tuan-Chun Fu Nov 2013

Development Of Effective Approaches To The Large-Scale Aerodynamic Testing Of Low-Rise Building, Tuan-Chun Fu

FIU Electronic Theses and Dissertations

Low-rise buildings are often subjected to high wind loads during hurricanes that lead to severe damage and cause water intrusion. It is therefore important to estimate accurate wind pressures for design purposes to reduce losses. Wind loads on low-rise buildings can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. A new partial turbulence simulation methodology was developed for simulating the effect of low-frequency flow …


Reflectance Anisotropy Of Gd5si2ge2 And Tb5si2.2ge1.8, S. J. Lee, Joong Mok Park, J. E. Snyder, David C. Jiles, Deborah L. Schlagel, Thomas A. Lograsso, A. O. Pecharsky, David W. Lynch Oct 2013

Reflectance Anisotropy Of Gd5si2ge2 And Tb5si2.2ge1.8, S. J. Lee, Joong Mok Park, J. E. Snyder, David C. Jiles, Deborah L. Schlagel, Thomas A. Lograsso, A. O. Pecharsky, David W. Lynch

Professor David Lynch

Reflectance difference (RD) spectra for the a–b plane of the single crystals of Gd5Si2Ge2and b–c planes of Gd5Si2Ge2 and Tb5Si2.2Ge1.8 were obtained in the photon energy range of 1.5–5.5 eV. Several peaks were observed for these crystals in the measured spectrum range. Similar features were observed in the RD spectra for the b–c planes ofGd5Si2Ge2 and Tb5Si2.2Ge1.8, while different features were observed for the a–b plane and b–c plane of Gd5Si2Ge2. The RD spectra for the crystals arise not only from the surface anisotropy but also from the bulk anisotropy due to the monoclinic structure of the bulk crystal.


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics …


Method And Implementation Of Absolute Near Cylindrical Wavefront Testing, Ayshah Alatawi Oct 2013

Method And Implementation Of Absolute Near Cylindrical Wavefront Testing, Ayshah Alatawi

Von Braun Symposium Student Posters

No abstract provided.


Zno Nanoneedle/H2o Solid-Liquid Heterojunction-Based Self-Powered Ultraviolet Detector, Qinghao Li, Lin Wei, Yanru Xie, Kai Zhang, Lei Liu, Dapeng Zhu, Jun Jiao, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei Oct 2013

Zno Nanoneedle/H2o Solid-Liquid Heterojunction-Based Self-Powered Ultraviolet Detector, Qinghao Li, Lin Wei, Yanru Xie, Kai Zhang, Lei Liu, Dapeng Zhu, Jun Jiao, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei

Physics Faculty Publications and Presentations

ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. …


Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano Oct 2013

Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano

Dissertations and Theses

The kinematics and dynamics for plane wave optics are derived for a massive electrodynamic field by utilizing Proca's theory. Atomic spectroscopy is also examined, with the focus on the 21 cm radiation due to the hyperfine structure of hydrogen. The modifications to Snell's Law, the Fresnel formulas, and the 21 cm radiation are shown to reduce to the familiar expressions in the limit of zero photon mass.


Harmonic Generation In Multiresonant Plasma Films, Maria Antonietta Vincenti, Domenico De Ceglia, Joseph W. Haus, Michael Scalora Oct 2013

Harmonic Generation In Multiresonant Plasma Films, Maria Antonietta Vincenti, Domenico De Ceglia, Joseph W. Haus, Michael Scalora

Electrical and Computer Engineering Faculty Publications

We investigate second- and third-harmonic generation in a slab of material that displays plasma resonances at the pump and its harmonic frequencies. Near-zero refractive indices and local field enhancement can deplete the pump for kW/cm2 incident powers, without resorting to other resonant photonic mechanisms. We show that low-threshold, highly efficient nonlinear processes are possible in the presence of losses and phase mismatch in structures that are 104 times shorter than typical nonlinear crystals, for relatively low irradiance values.


Modeling The Atomic And Electronic Structure Of Metal-Metal, Metal-Semiconductor And Semiconductor-Oxide Interfaces, Ganesh Krishna Hegde Oct 2013

Modeling The Atomic And Electronic Structure Of Metal-Metal, Metal-Semiconductor And Semiconductor-Oxide Interfaces, Ganesh Krishna Hegde

Open Access Dissertations

The continuous downward scaling of electronic devices has renewed attention on the importance of the role of material interfaces in the functioning of key components in electronic technology in recent times. It has also brought into focus the utility of

atomistic modeling in providing insights from a materials design perspective. In this thesis, a combination of Semi Empirical Tight-Binding (TB), first-principles Density

Functional Theory and Reactive Molecular Dynamics (MD) modeling is used to study aspects of the electronic and atomic structure of three such 'canonical' material interfaces - Metal-Metal, Metal-Semiconductor and Semiconductor oxide interfaces.

An important contribution of this thesis …


Atomistic Simulation Of Plasma Interaction With Plasma Facing Components In Fusion Reactors, Xue Yang Oct 2013

Atomistic Simulation Of Plasma Interaction With Plasma Facing Components In Fusion Reactors, Xue Yang

Open Access Dissertations

The interaction between plasma and fusion relevant materials is one of the critical issues in successfully using those materials in Tokamak reactors. This research uses molecular dynamics, kinetic Monte Carlo and binary collision approximation methods to model fusion relevant material bombarded by energetic particles to investigate retention, deposition, sputtering, erosion, blistering effects, diffusion, and so on.

The deuterium bombardment of monocrystalline tungsten was modeled by LAMMPS code using Tersoff type interatomic potential. The deuterium trapping rate, implantation depth, and stopping time in 600-2000 K tungsten bombarded by 5-100 eV deuterium atoms were simulated. Irradiated monocrystalline tungsten became amorphous prior to …


Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav Oct 2013

Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav

Open Access Dissertations

Thermoelectric devices and lithium-ion batteries are among the fastest growing energy technologies. Thermoelectric devices generate energy from waste heat, whereas lithium-ion batteries store energy for use in commercial applications. Two different topics are bound with a common thread in this thesis - nanotechnology! In fact, nanostructuring is a more preferred term for the approach I have taken herein. Another commonality between these two topics is the material system I have used to prove my hypotheses - complex metal oxides.

Complex metal oxides can be used for both energy generation and storage as they are stable at high temperatures, are benign …


Altered Cholesterol Metabolism In Human Cancers Unraveled By Label-Free Spectroscopic Imaging, Shuhua Yue Oct 2013

Altered Cholesterol Metabolism In Human Cancers Unraveled By Label-Free Spectroscopic Imaging, Shuhua Yue

Open Access Dissertations

Despite tremendous scientific achievements, cancer remains the second leading cause of death in the United States. Metabolic reprogramming has been increasingly recognized as a core hallmark of cancer. My dissertation work identified novel diagnostic markers and therapeutic targets for human cancers through the study of cholesterol in cancer cells.

Enabled by label-free Raman spectromicroscopy, we performed the first quantitative analysis of lipogenesis at single cell level in human patient cancerous tissues. Our imaging data revealed an unexpected, aberrant accumulation of esterified cholesterol in lipid droplets of high-grade prostate cancer and metastases, but not in normal prostate, benign prostatic hyperplasia, or …


Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng Oct 2013

Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng

Open Access Dissertations

By quantitating the amplitude of the unbounded stress, the continuum fracture mechanics defines the stress intensity factor K to characterize the stress and displacement fields in the vicinity of the crack tip, thereby developing the relation between the stress singularity and surface energy (energy release rate G). This G-K relation, assigning physical meaning to the stress intensity factor, makes these two fracture parameters widely used in predicting the onset of crack propagation. However, due to the discrete nature of the atomistic structures without stress singularity, there might be discrepancy between the failure prediction and the reality of nanostructured materials. Defining …


Evaluation Of Thermal Radiation Effects On Apparent Propagation Rates Of High Pressure Spherical Flames, Jeffrey S. Santner, Francis M. Haas, Yiguang Ju, Frederick L. Dryer Sep 2013

Evaluation Of Thermal Radiation Effects On Apparent Propagation Rates Of High Pressure Spherical Flames, Jeffrey S. Santner, Francis M. Haas, Yiguang Ju, Frederick L. Dryer

Francis (Mac) Haas

Thermal radiation is usually not considered in the interpretation of laminar burning rates measured by the outwardly propagating spherical flame method. However, it may contribute significantly to measurement uncertainty, especially for model-constraining conditions at lower flame temperatures and higher pressures. The present work derives a conservative analytical estimate of the effects of radiation heat loss, which include radiation-induced burned gas motion, decreasing flame temperature due to conduction to the radiating burned gas, and radiation loss from the flame zone. Detailed numerical simulations covering a range of burning conditions serve to validate this analytical tool. Modeling results from both detailed simulation …


Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii Sep 2013

Tubular And Sector Heat Pipes With Interconnected Branches For Gas Turbine And/Or Compressor Cooling, Brian D. Reding Ii

FIU Electronic Theses and Dissertations

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system …


Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer Sep 2013

Fabricating Cost-Effective Nanostructures For Biomedical Applications, Erden Ertorer

Electronic Thesis and Dissertation Repository

In this thesis we described inexpensive alternatives to fabricate nanostructures on planar substrates and provided example applications to discuss the efficiency of fabricated nanostructures.

The first method we described is forming large area systematically changing multi-shape nanoscale structures on a chip by laser interference lithography. We analyzed the fabricated structures at different substrate positions with respect to exposure time, exposure angle and associated light intensity profile. We presented experimental details related to the fabrication of symmetric and biaxial periodic nanostructures on photoresist, silicon surfaces, and ion-milled glass substrates. Behavior of osteoblasts and osteoclasts on the nanostructures was investigated. These results …


Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi Sep 2013

Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi

Electrical and Computer Engineering Faculty Publications

A series of recent studies involving hybrid acousto-optic (AO) scattering in the Bragg domain under first-order feedback have shown the ability of the AO feedback system to encrypt, transmit and decrypt RF information applied via the sound driver. The basic premise of this operation is founded on the chaotic nature of the hybrid Bragg cell under feedback.


Complex Reflection Coefficients Of P- And S-Polarized Light At The Pseudo-Brewster Angle Of A Dielectric–Conductor Interface, Rasheed M.A. Azzam Sep 2013

Complex Reflection Coefficients Of P- And S-Polarized Light At The Pseudo-Brewster Angle Of A Dielectric–Conductor Interface, Rasheed M.A. Azzam

Electrical Engineering Faculty Publications

The complex Fresnel reflection coefficients rp and rs of p- and s-polarized light and their ratio ρ = rp/rs at the pseudo-Brewster angle (PBA) φpBof a dielectric-conductor interface are evaluated for all possible values of the complex relative dielectric function Ε = |Ε| exp(-jθ) = Εr - jΕi, Εi > 0 that share the same φpB. Complex-plane trajectories of rp, rs, and ρ at the PBA are presented at discrete values of φpB from 5° to 85° in equal steps of 5° as θ is increased from 0° to 180°. It is shown that for φpB > 70° (high-reflectance metals in the …


Ground State Of The Singly Ionized Oxygen Vacancy In Rutile Tio2, A. T. Brant, Nancy C. Giles, Shan Yang (杨山), M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton Sep 2013

Ground State Of The Singly Ionized Oxygen Vacancy In Rutile Tio2, A. T. Brant, Nancy C. Giles, Shan Yang (杨山), M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, Larry E. Halliburton

Faculty Publications

Results from electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) experiments are used to establish the model for the ground state of the singly ionized oxygen vacancy in the interior of bulk rutile TiO2 crystals. Hyperfine from 47Ti and 49Ti nuclei show that the unpaired electron in this S = 1/2 defect is localized on one titanium ion adjacent to the oxygen vacancy (i.e., the spin is not shared by two titanium ions). These defects are formed at low temperature (∼35 K) in as-grown oxidized crystals when sub-band-gap 442 nm laser light converts doubly ionized nonparamagnetic …


Piv-Based Investigation Of Hemodynamic Factors In Diseased Carotid Artery Bifurcations With Varying Plaque Geometries, Sarah Kefayati Aug 2013

Piv-Based Investigation Of Hemodynamic Factors In Diseased Carotid Artery Bifurcations With Varying Plaque Geometries, Sarah Kefayati

Electronic Thesis and Dissertation Repository

Ischemic stroke is often a consequence of complications due to clot formation (i.e. thrombosis) at the site of an atherosclerotic plaque developed in the internal carotid artery. Hemodynamic factors, such as shear-stress forces and flow disturbances, can facilitate the key mechanisms of thrombosis. Atherosclerotic plaques can differ in the severity of stenosis (narrowing), in eccentricity (symmetry), as well as inclusion of ulceration (wall roughness). Therefore, in terms of clinical significance, it is important to investigate how the local hemodynamics of the carotid artery is mediated by the geometry of plaque. Knowledge of thrombosis-associated hemodynamics may provide a basis to introduce …


Strengthening The Pathway To Stem Research Leadership At Hope College, Catherine Mader Aug 2013

Strengthening The Pathway To Stem Research Leadership At Hope College, Catherine Mader

Faculty Presentations

Over the past 20 years, awards from the Howard Hughes Medical Institute have supported Hope's efforts to conduct STEM research and to prepare students to pursue careers as STEM researchers. The current program is building upon prior successes to create a deliberate pathway for students as they enter Hope as novices, build STEM Researcher skills through coursework and summer research and eventually become student leaders in STEM Research groups.


Novel Nanostructured Rare-Earth-Free Magnetic Materials With High Energy Products, Bhaskar Das Aug 2013

Novel Nanostructured Rare-Earth-Free Magnetic Materials With High Energy Products, Bhaskar Das

B. Das

Novel nanostructured Zr2Co11-based magnetic materials are fabricated in a single step process using cluster-deposition method. The composition, atomic ordering, and spin structure are precisely controlled to achieve a substantial magnetic remanence and coercivity, as well as the highest energy product for non-rare-earth and Pt-free permanent-magnet alloys.


Controlled Magnetic Reversal In Permalloy Films Patterned Into Artificial Quasicrystals, Vinayak Shantaram Bhat, J. Sklenar, B. Farmer, J. Woods, Jeffrey Todd Hastings, S. J. Lee, J. B. Ketterson, Lance E. De Long Aug 2013

Controlled Magnetic Reversal In Permalloy Films Patterned Into Artificial Quasicrystals, Vinayak Shantaram Bhat, J. Sklenar, B. Farmer, J. Woods, Jeffrey Todd Hastings, S. J. Lee, J. B. Ketterson, Lance E. De Long

Physics and Astronomy Faculty Publications

We have patterned novel Permalloy thin films with quasicrystalline Penrose P2 tilings and measured their dc magnetization and ferromagnetic resonance absorption. Reproducible anomalies in the hysteretic, low-field data signal a series of abrupt transitions between ordered magnetization textures, culminating in a smooth evolution into a saturated state. Micromagnetic simulations compare well to experimental dc hysteresis loops and ferromagnetic resonance spectra and indicate that systematic control of magnetic reversal and domain wall motion can be achieved via tiling design, offering a new paradigm of magnonic quasicrystals.