Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Laboratory Plasma Tests Towards The Production Of Simulated Supernova Shock Waves, Elatia Zaffke, John Sinko, Matthew Thomas, Elisha Polomski Nov 2020

Laboratory Plasma Tests Towards The Production Of Simulated Supernova Shock Waves, Elatia Zaffke, John Sinko, Matthew Thomas, Elisha Polomski

SCSU Journal of Student Scholarship

Supernovae are some of the most powerful explosions that occur in our universe. These explosions generate massive shock waves that span tens of light years in distance. They are responsible for atomic fusion that creates the denser elements, needed for the creation of planets such as our own. The goal of this project was to simulate a supernova on a small scale, in order to study the resultant shock waves and their effects upon the interstellar medium. This research can improve understanding of the impact these events have upon the formation of solar systems and the composition of the interstellar …


Laser Production And Characterization Of Zinc-Oxide Nanoparticles, Bijaya Ghorasainee, Sanjeev Regmi, John Sinko Oct 2020

Laser Production And Characterization Of Zinc-Oxide Nanoparticles, Bijaya Ghorasainee, Sanjeev Regmi, John Sinko

SCSU Journal of Student Scholarship

ZnO nanoparticles exhibit attractive optical properties that are important in the realm of catalysis and nanotechnology involving the developments of solar cells, chemical sensors and other optoelectronic devices. The main objective of this project was to create zinc oxide nanoparticles of less than 10 nm size by using an Nd: YAG laser and characterize the particle diameter. Zinc oxide nanoparticles were prepared by vaporizing zinc in neat deionized water by laser ablation, aided by a physical 2D-motional micro-stage programmed by Arduino. The addition of surfactant was explored to reduce aggregation of the nanoparticles. Various purification methods were applied to this …


Variable Temperature Thermochromic Switching Under Varying Illumination, Alexis Corbett, Danielle Hall, John E. Sinko Apr 2018

Variable Temperature Thermochromic Switching Under Varying Illumination, Alexis Corbett, Danielle Hall, John E. Sinko

Huskies Showcase

Award for "Runner-Up Poster Presentation".

Abstract

Minnesota is home to some of the greatest temperature ranges in the United States, with lows reaching below -40º Celsius and highs reaching nearly 40ºC. This results in higher than average spending on the heating and cooling of buildings. We have been investigating into responsive building materials to help address this. In particular, we have been studying a thermochromic paint that can capture solar energy and transfer it into the building as heat at low temperatures and reflect the energy at higher temperatures to keep the building cooler.


Open Source Electronics For Laboratory Physics, Zengqiang John Liu Jul 2015

Open Source Electronics For Laboratory Physics, Zengqiang John Liu

Physics and Astronomy Faculty Presentations

Open-source electronic devices are transforming laboratory physics education in unprecedented ways. More and more physics instructors have found that open-source electronics, such as Arduino, can provide them with wonderful teaching and learning opportunities. They can develop new laboratory activities and demonstrations, as well as exploratory and advanced projects, often involving their students. The cost is usually low. Participants of this workshop will dive right into interfacing sensors with Arduino compatible platforms. They will acquire first-hand experience constructing circuits and interfacing with sonic rangers, photogates, temperature probes, force gauges, accelerometers, magnetometers, SD cards, displays, user interfaces, and other common sensors, devices, …


Temperature Dependent C-Axis Hole Mobilities In Rubrene Single Crystals Determined By Time-Of-Flight, Russell L. Lidberg, Tom J. Pundsack, Neale O. Haugen, Lucas R. Johnstone, C. Daniel Frisbie Mar 2015

Temperature Dependent C-Axis Hole Mobilities In Rubrene Single Crystals Determined By Time-Of-Flight, Russell L. Lidberg, Tom J. Pundsack, Neale O. Haugen, Lucas R. Johnstone, C. Daniel Frisbie

Physics and Astronomy Faculty Publications

Hole mobilities (μ) in rubrene single crystals (space group Cmca) along the crystallographic c-axis have been investigated as a function of temperature and applied electric field by the time-of-fight method. Measurements demonstrate an inverse power law dependence on temperature, namely,μ=μ0T−n with n = 1.8, from room temperature down to 180 K. At 296 K, the average value of μ was found to be 0.29 cm2/Vs increasing to an average value of 0.70 cm2/Vs at 180 K. Below 180 K a decrease in mobility is observed with further cooling. Overall, these results confirm the …


Open Source Electronics For Laboratory Physics, Zengqiang John Liu Jul 2014

Open Source Electronics For Laboratory Physics, Zengqiang John Liu

Physics and Astronomy Faculty Presentations

Open-source electronics are electrical circuits and devices whose designs are released to the public by the designers, so others may modify and improve them. Using open-source data acquisition electronics in laboratory physics will dramatically reduce the cost of laboratory electronics and empower instructors to develop new laboratory activities, demonstrations and exploratory projects with students. This workshop will improve participants' understanding of open-source electronics and their applications in laboratory physics. Many laboratory physics sensors and open-source devices will be introduces and demonstrated. The workshop provides hands-on experiences in projects using laboratory physics sensors with an award-winning, low-cost, open-source electronic data acquisition …