Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Robustness And Mode Selectivity In Parity-Time (Pt) Symmetric Lasers, M. H. Teimourpour, M. Khajavikhan, Demetrios N. Christodoulides, Ramy El-Ganainy Jul 2018

Robustness And Mode Selectivity In Parity-Time (Pt) Symmetric Lasers, M. H. Teimourpour, M. Khajavikhan, Demetrios N. Christodoulides, Ramy El-Ganainy

Ramy El-Ganainy

We investigate two important aspects of PT symmetric photonic molecule lasers, namely the robustness of their single longitudinal mode operation against instabilities triggered by spectral hole burning effects, and the possibility of more versatile mode selectivity. Our results, supported by numerically integrating the nonlinear rate equations and performing linear stability analysis, reveals the following: (1) In principle a second threshold exists after which single mode operation becomes unstable, signaling multimode oscillatory dynamics, (2) For a wide range of design parameters, single mode operation of PT lasers having relatively large free spectral range (FSR) can be robust even at higher gain …


Accelerating Diffraction-Free Beams In Photonic Lattices, K. Makris, I. Kaminer, Ramy El-Ganainy, N. Efremidis, Zhigang Chen, M. Segev, Demetrios Christodoulides Jun 2015

Accelerating Diffraction-Free Beams In Photonic Lattices, K. Makris, I. Kaminer, Ramy El-Ganainy, N. Efremidis, Zhigang Chen, M. Segev, Demetrios Christodoulides

Ramy El-Ganainy

We study nondiffracting accelerating paraxial optical beams in periodic potentials, in both the linear and the nonlinear domains. In particular, we show that only a unique class of z-dependent lattices can support a true accelerating diffractionless beam. Accelerating lattice solitons, autofocusing beams and accelerating bullets in optical lattices are systematically examined.


On-Chip Multi 4-Port Optical Circulators, Ramy El-Ganainy, Miguel Levy Jun 2015

On-Chip Multi 4-Port Optical Circulators, Ramy El-Ganainy, Miguel Levy

Ramy El-Ganainy

We present a new geometry for on-chip optical circulators based on waveguide arrays. The optical array is engineered to mimic the Fock space representation of a noninteracting two-site Bose–Hubbard Hamiltonian. By introducing a carefully tailored magnetooptic nonreciprocity to these structures, the array operates in the perfect transfer and surface Bloch oscillation modes in the forward and backward propagation directions, respectively. We show that an array made of ð2N þ 1Þ waveguide channels can function as N 4-port optical circulators with very large isolation ratios and low forward losses. Numerical analysis using beam propagation method indicates a large bandwidth of operation.


Light Transport In Pt-Invariant Photonic Structures With Hidden Symmetries, M. H. Teimourpour, Ramy El-Ganainy, A. Eisfeld, A. Szameit, Demetrios N. Christodoulides Jun 2015

Light Transport In Pt-Invariant Photonic Structures With Hidden Symmetries, M. H. Teimourpour, Ramy El-Ganainy, A. Eisfeld, A. Szameit, Demetrios N. Christodoulides

Ramy El-Ganainy

We introduce a recursive bosonic quantization technique for generating classical PT photonic structures that possess hidden symmetries and higher order exceptional points. We study light transport in these geometries and we demonstrate that perfect state transfer is possible only for certain initial conditions. Moreover, we show that for the same propagation direction, left and right coherent transports are not symmetric with field amplitudes following two different trajectories. A general scheme for identifying the conservation laws in such PT-symmetric photonic networks is also presented.


Exceptional Points And Lasing Self-Termination In Photonic Molecules, Ramy El-Ganainy, M. Khajavikhan, Li Ge Jun 2015

Exceptional Points And Lasing Self-Termination In Photonic Molecules, Ramy El-Ganainy, M. Khajavikhan, Li Ge

Ramy El-Ganainy

We investigate the rich physics of photonic molecule lasers using a non-Hermitian dimer model.We show that several interesting features, predicted recently using a rigorous steady-state ab initio laser theory (SALT), can be captured by this toy model. In particular, we demonstrate the central role played by exceptional points (EPs) in both pump-selective lasing and laser self-termination phenomena. Due to its transparent mathematical structure, our model provides a lucid understanding for how different physical parameters (optical loss, modal coupling between microcavities, and pump profiles) affect the lasing action. Interestingly, our analysis also confirms that, for frequency mismatched cavities, operation in the …


On-Chip Non-Reciprocal Optical Devices Based On Quantum Inspired Photonic Lattices, Ramy El-Ganainy, A. Eisfeld, Miquel Levy, Demetrios N. Christodoulides Jun 2015

On-Chip Non-Reciprocal Optical Devices Based On Quantum Inspired Photonic Lattices, Ramy El-Ganainy, A. Eisfeld, Miquel Levy, Demetrios N. Christodoulides

Ramy El-Ganainy

We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio …


Supersymmetric Mode Converters, Matthias Heinrich, Mohammad-Ali Miri, Simon Stützer, Ramy El-Ganainy, Stefan Nolte, Alexander Szameit, Demetrios N. Christodoulides Jun 2015

Supersymmetric Mode Converters, Matthias Heinrich, Mohammad-Ali Miri, Simon Stützer, Ramy El-Ganainy, Stefan Nolte, Alexander Szameit, Demetrios N. Christodoulides

Ramy El-Ganainy

Originally developed in the context of quantum field theory, the concept of supersymmetry can be used to systematically design a new class of optical structures. In this work, we demonstrate how key features arising from optical supersymmetry can be exploited to control the flow of light for mode division multiplexing applications. Superpartner configurations are experimentally realized in coupled optical networks, and the corresponding light dynamics in such systems are directly observed. We show that supersymmetry can be judiciously utilized to remove the fundamental mode of a multimode optical structure, while establishing global phase matching conditions for the remaining set of …


Enhancing Optical Isolator Performance In Nonreciprocal Waveguide Arrays, Miguel Levy, Turhan Carroll, Ramy El-Ganainy Jun 2015

Enhancing Optical Isolator Performance In Nonreciprocal Waveguide Arrays, Miguel Levy, Turhan Carroll, Ramy El-Ganainy

Ramy El-Ganainy

We investigate the operation of optical isolators based on magneto-optics waveguide arrays beyond the coupled mode analysis. Semi-vectorial beam propagation simulations demonstrate that evanescent tail coupling and the effects of radiation are responsible for degrading the device’s performance. Our analysis suggests that these effects can be mitigated when the array size is scaled up. In addition, we propose the use of radiation blockers in order to offset some of these effects, and we show that they provide a dramatic improvement in performance. Finally, we also study the robustness of the system with respect to fabrication tolerances using the coupled mode …


Observation Of Accelerating Wannier-Stark Beams In Optically Induced Photonic Lattices, Xinyuan Qi, Konstantinos Makris, Ramy El-Ganainy, Peng Zhang, Jintao Bai, Demetrios Christodoulides, Zhigang Chen Jun 2015

Observation Of Accelerating Wannier-Stark Beams In Optically Induced Photonic Lattices, Xinyuan Qi, Konstantinos Makris, Ramy El-Ganainy, Peng Zhang, Jintao Bai, Demetrios Christodoulides, Zhigang Chen

Ramy El-Ganainy

We generate optical beams analogous to the Wannier–Stark states in semiconductor superlattices and observe that the two main lobes of the WS beams self-bend (accelerate) along two opposite trajectories in a uniform one-dimensional photonic lattice. Such self-accelerating features exist only in the presence of the lattice and are not observed in a homogenous medium. Under the action of nonlinearity, however, the beam structure and acceleration cannot be preserved. Our experimental observations are in qualitative agreement with theoretical predictions.