Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Optics

Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 455

Full-Text Articles in Physics

Generation Of Broadband Thz Pulses By Laser Wakefield At Radial Boundary Of Plasma Column, Serge Y. Kalmykov, Alexander Englesbe, Jennifer Elle, Andreas Schmitt-Sody Mar 2019

Generation Of Broadband Thz Pulses By Laser Wakefield At Radial Boundary Of Plasma Column, Serge Y. Kalmykov, Alexander Englesbe, Jennifer Elle, Andreas Schmitt-Sody

Serge Youri Kalmykov

Photoionization of an ambient gas by a tightly focused, femtosecond, weakly relativistic laser pulse leaves behind
the pulse a column of electron density (a “filament”). At the column surface, the density drops to zero within a thin (micronscale) boundary layer. Ponderomotive force of the pulse drives within the filament a cylindrical wave of charge separation (laser wake). If the pulse waist size is much smaller than the Langmuir wavelength, electron current in the wake is mostly transverse. In the filament surface area, this current rapidly decays (electrons, crossing the sharp density gradient, phase out of wake within a few Langmuir ...


Gas Pressure Dependence Of Microwave Pulses Generated By Laser-Produced Filament Plasmas, Alexander Englesbe, Jennifer Elle, Remington Reid, Adrian Lucero, Hugh Pohle, Matthew Domonkos, Serge Y. Kalmykov, Karl Krushelnick, Andreas Schmitt-Sody Oct 2018

Gas Pressure Dependence Of Microwave Pulses Generated By Laser-Produced Filament Plasmas, Alexander Englesbe, Jennifer Elle, Remington Reid, Adrian Lucero, Hugh Pohle, Matthew Domonkos, Serge Y. Kalmykov, Karl Krushelnick, Andreas Schmitt-Sody

Serge Youri Kalmykov

The plasma arising due to the propagation of a filamenting ultrafast laser pulse in air contains currents driven by the pulse that generate radiated electromagnetic fields. We report absolutely calibrated measurements of the frequency spectrum of microwaves radiated by the filament plasma from 2–40 GHz. The emission pattern of the electric field spectrum is mapped as a function of air pressure from atmosphere to 0.5 Torr. For fixed laser pulse energy, duration, and focal geometry, we observe that decreasing the air pressure by a factor of approximately 103 increases the amplitude of the electric field waveform by a ...


Robustness And Mode Selectivity In Parity-Time (Pt) Symmetric Lasers, M. H. Teimourpour, M. Khajavikhan, Demetrios N. Christodoulides, Ramy El-Ganainy Jul 2018

Robustness And Mode Selectivity In Parity-Time (Pt) Symmetric Lasers, M. H. Teimourpour, M. Khajavikhan, Demetrios N. Christodoulides, Ramy El-Ganainy

Ramy El-Ganainy

We investigate two important aspects of PT symmetric photonic molecule lasers, namely the robustness of their single longitudinal mode operation against instabilities triggered by spectral hole burning effects, and the possibility of more versatile mode selectivity. Our results, supported by numerically integrating the nonlinear rate equations and performing linear stability analysis, reveals the following: (1) In principle a second threshold exists after which single mode operation becomes unstable, signaling multimode oscillatory dynamics, (2) For a wide range of design parameters, single mode operation of PT lasers having relatively large free spectral range (FSR) can be robust even at higher gain ...


Optically Controlled Laser-Plasma Electron Acceleration For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick Feb 2018

Optically Controlled Laser-Plasma Electron Acceleration For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Thomson scattering (TS) from electron beams produced in laser-plasma accelerators may generate femtosecond pulses of quasi-monochromatic, multi-MeV photons. Scaling laws suggest that reaching the necessary GeVelectron energy, with a percent-scale energy spread and five-dimensional brightness over 10^16 A/m^2, requires acceleration in centimeter-length, tenuous plasmas (n ~ 10^17 cm^-#3;3), with petawatt-class lasers. Ultrahigh per-pulse power mandates single-shot operation, frustrating applications dependent on dosage. To generate high-quality near-GeV beams at a manageable average power (thus affording kHz repetition rate), we propose acceleration in a cavity of electron density, driven with an incoherent stack of sub-Joule laser pulses ...


Optically Controlled Laser-Plasma Electron Accelerator For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick Feb 2018

Optically Controlled Laser-Plasma Electron Accelerator For Compact Gamma-Ray Sources, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Generating quasi-monochromatic, femtosecond gamma-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent scale energy spread and five-dimensional brightness over 10^16 A/m^2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n ~ 10^19 cm^-􀀀3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition ...


Multi-Color, Femtosecond Gamma-Ray Pulse Trains Driven By Comb-Like Electron Beams, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick Feb 2018

Multi-Color, Femtosecond Gamma-Ray Pulse Trains Driven By Comb-Like Electron Beams, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Photon engineering can be exploited to control the nonlinear evolution of the drive pulse in a laser–plasma accelerator (LPA), offering new avenues to tailor electron beam phase space on a femtosecond time scale. One promising option is to drive an LPA with an incoherent stack of two sub-Joule, multi-TW pulses of different colors. Slow self-compression of the bi-color optical driver delays electron dephasing, boosting electron beam energy without accumulation of a massive low-energy tail. The modest energy of the stack affords kHz-scale repetition rate at manageable laser average power. Propagating the stack in a pre-formed plasma channel induces periodic ...


Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak Jan 2018

Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak

John Jaszczak

Although devices have been fabricated displaying interesting single-electron transport characteristics, there has been limited progress in the development of tools that can simulate such devices based on their physical geometry over a range of bias conditions up to a few volts per junction. In this work, we present the development of a multi-island transport simulator, MITS, a simulator of tunneling transport in multi-island devices that takes into account geometrical and material parameters, and can span low and high source-drain biases. First, the capabilities of MITS are demonstrated by modeling experimentaldevices described in the literature, and showing that the simulated device ...


Roughening And Preroughening Of Diamond-Cubic {111} Surfaces, Donald L. Woodraska, John A. Jaszczak Jan 2018

Roughening And Preroughening Of Diamond-Cubic {111} Surfaces, Donald L. Woodraska, John A. Jaszczak

John Jaszczak

A solid-on-solid model for {111} surfaces of diamond-cubic materials that correctly takes into account the diamond-cubic crystal structure has been developed for Monte Carlo simulation. In addition to a roughening transition at temperature TR, a distinct preroughening transition at TPR≈0.43TR is indicated by divergences in the surface specific heat and order-parameter susceptibility. Preroughening appears to arise naturally in our nearest-neighbor bond model from the entropic freedom available in the nontrivial crystal structure. Preroughening is shown to dramatically lower the nucleation barrier for growth and etching at low driving forces.


Mechanism For Spatial Organization In Quantum Dot Self-Assembly, Da Gao, Adam Kaczynski, John A. Jaszczak Jan 2018

Mechanism For Spatial Organization In Quantum Dot Self-Assembly, Da Gao, Adam Kaczynski, John A. Jaszczak

John Jaszczak

Inspired by experimental observations of spatially ordered growth hillocks on the (001) surfaces of natural graphite crystals, a mechanism for spatial organization in quantum dotself-assembly is proposed. The regular arrangement of steps from a screw dislocation-generated growth spiral provides the overall template for such ordering. An ordered array of quantum dots may be formed or nucleated from impurities driven to the step corners by diffusion and by their interactions with the spiral’s steps and kinks. Kinetic Monte Carlo simulation of a solid-on-solid model supports the feasibility of such a mechanism.


New Flexible Channels For Room Temperature Tunneling Field Effect Transistors, Boyi Hao, Anjana Asthana, Paniz Khanmohammadi, Paul Bergstrom, Douglas R. Banyai, Madhusudan A. Savaikar, John A. Jaszczak, Yoke Khin Yap Aug 2017

New Flexible Channels For Room Temperature Tunneling Field Effect Transistors, Boyi Hao, Anjana Asthana, Paniz Khanmohammadi, Paul Bergstrom, Douglas R. Banyai, Madhusudan A. Savaikar, John A. Jaszczak, Yoke Khin Yap

Paul Bergstrom

Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various ...


Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak Aug 2017

Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak

Paul Bergstrom

Although devices have been fabricated displaying interesting single-electron transport characteristics, there has been limited progress in the development of tools that can simulate such devices based on their physical geometry over a range of bias conditions up to a few volts per junction. In this work, we present the development of a multi-island transport simulator, MITS, a simulator of tunneling transport in multi-island devices that takes into account geometrical and material parameters, and can span low and high source-drain biases. First, the capabilities of MITS are demonstrated by modeling experimentaldevices described in the literature, and showing that the simulated device ...


Evaluation Of Commercial Nickel–Phosphorus Coating For Ultracold Neutron Guides Using A Pinhole Bottling Method, Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, Leah J. Broussard, Nathan Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott A. Currie, Peter Geltenbort, Takeyasu M. Ito, T. Lauer, Chenyu Liu, Jaroslaw Majewski, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, John C. Ramsey, Daniel J. Salvat, Alexander Saunders, Juri Schroffenegger, Zebo Tang, Wanchun Wei, Zhehui Wang, Erik B. Watkins, Albert R. Young, B.A. Zeck Aug 2017

Evaluation Of Commercial Nickel–Phosphorus Coating For Ultracold Neutron Guides Using A Pinhole Bottling Method, Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, Leah J. Broussard, Nathan Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott A. Currie, Peter Geltenbort, Takeyasu M. Ito, T. Lauer, Chenyu Liu, Jaroslaw Majewski, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, John C. Ramsey, Daniel J. Salvat, Alexander Saunders, Juri Schroffenegger, Zebo Tang, Wanchun Wei, Zhehui Wang, Erik B. Watkins, Albert R. Young, B.A. Zeck

Robert W. Pattie Jr.

We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss ...


Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi Jul 2017

Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi

David Rosengrant

In order to help introductory physics students understand and learn to solve problems with circuits, we must first understand how they differ from experts. This preliminary study focuses on problem-solving dealing with electrical circuits. We investigate difficulties novices have with circuits and compare their work with those of experts. We incorporate the use of an eye-tracker to investigate any possible differences or similarities on how experts and novices solve electrical circuit problems. Our results show similarities in gaze patterns among all subjects on the components of the circuit. We further found that experts would look back at the circuit while ...


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore Jun 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Russell C. Hardie

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a ...


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii ...


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an ...


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Jun 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Russell C. Hardie

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video ...


Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore Jun 2017

Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore

Russell C. Hardie

We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames ...


Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai Jun 2017

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Russell C. Hardie

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation ...


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


Multi-Color Γ-Rays From Comb-Like Electron Beams Driven By Incoherent Stacks Of Laser Pulses, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick Mar 2017

Multi-Color Γ-Rays From Comb-Like Electron Beams Driven By Incoherent Stacks Of Laser Pulses, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Trains of fs-length, GeV-scale electron bunches with controlled energy spacing and a 5-D brightness up to
10^17 A/m^2 may be produced in a mm-scale uniform plasma. The main element of the scheme is an incoherent stack of 10-TW-scale laser pulses of different colors, with mismatched focal spots, with the highest-frequency pulse advanced in time. While driving an electron density bubble, this stack remains almost proof against nonlinear red-shift and self-compression. As a consequence, the unwanted continuous injection of background electrons is minimized. Weak focusing of the trailing (lower-frequency) component of the stack enforces expansions and contractions of ...


Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia Feb 2017

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia

Andrew Sarangan

Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second ...


Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia Feb 2017

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia

Joseph W Haus

Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second ...


Role Of Antenna Modes And Field Enhancement In Second Harmonic Generation From Dipole Nanoantennas, Domenico De Ceglia, Maria Antonietta Vincenti, Costantino De Angelis, Andrea Locatelli, Joseph W. Haus, Michael Scalora Feb 2017

Role Of Antenna Modes And Field Enhancement In Second Harmonic Generation From Dipole Nanoantennas, Domenico De Ceglia, Maria Antonietta Vincenti, Costantino De Angelis, Andrea Locatelli, Joseph W. Haus, Michael Scalora

Joseph W. Haus

We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap’s displacements with respect ...


Tunable Narrow Band Difference Frequency Thz Wave Generation In Dast Via Dual Seed Ppln Opg, Brian Dolasinski, Peter E. Powers, Joseph W. Haus, Adam Cooney Feb 2017

Tunable Narrow Band Difference Frequency Thz Wave Generation In Dast Via Dual Seed Ppln Opg, Brian Dolasinski, Peter E. Powers, Joseph W. Haus, Adam Cooney

Joseph W. Haus

We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.


Practical Guide To The Realization Of A Convertible Optical Trapping System, Chenglong Zhao Feb 2017

Practical Guide To The Realization Of A Convertible Optical Trapping System, Chenglong Zhao

Chenglong Zhao

In this article, we provide a detailed guide to the construction of a convertible optical trapping system for either single-beam or counter-propagating trap. The single-beam trap maintains all the functionalities that a conventional optical tweezer has. While the counter-propagating trap allows for the trapping of particles that single-beam trap cannot handle. The counter-propagating trap can be easily switched to a single-beam trap, and vice versa. Therefore, this convertible optical trapping system allows for the trapping and manipulation of particles with a wide variety of sizes and materials.


Hybrid Spatiotemporal Coherent Pulse Addition Of A Picosecond Flashlamp-Pumped Ndyag Laser.Pdf, Ahmad Azim Nov 2016

Hybrid Spatiotemporal Coherent Pulse Addition Of A Picosecond Flashlamp-Pumped Ndyag Laser.Pdf, Ahmad Azim

Ahmad Azim

We demonstrate active and passive coherent pulse addition in a flashlamp-pumped Nd:YAG amplifier chain for pumping OPCPA systems. The amplification of 200 ps pulses to 216 mJ is achieved with a 79% combination efficiency.


Accordion Effect Revisited: Generation Of Comb-Like Electron Beams In Plasma Channels, Serge Y. Kalmykov, X. Davoine, Remi Lehe, Agustin F. Lifschitz, Bradley A. Shadwick Oct 2016

Accordion Effect Revisited: Generation Of Comb-Like Electron Beams In Plasma Channels, Serge Y. Kalmykov, X. Davoine, Remi Lehe, Agustin F. Lifschitz, Bradley A. Shadwick

Serge Youri Kalmykov

Propagating a short, relativistically intense laser pulse in a plasma channel makes it possible to generate comb-like electron beams – sequences of synchronized, low phase-space volume bunches with controllable energy difference. The tail of the pulse, confined in the accelerator cavity (electron density “bubble”), transversely flaps, as the pulse head steadily self-guides. The resulting oscillations of the cavity size cause periodic injection of electrons from ambient plasma, creating an energy comb with the number of components, their energy, and energy separation dependent on the channel radius and pulse length. Accumulation of noise (continuously injected charge) can be prevented using a negatively ...


Examination Of The Nonlinear Dynamics And Possible Chaos Encryption In A Zeroth-Order Acousto-Optic Bragg Modulator With Feedback, Fares S. Almehmadi, Monish Ranjan Chatterjee Oct 2016

Examination Of The Nonlinear Dynamics And Possible Chaos Encryption In A Zeroth-Order Acousto-Optic Bragg Modulator With Feedback, Fares S. Almehmadi, Monish Ranjan Chatterjee

Monish R. Chatterjee

Zeroth-order chaos modulation in a Bragg cell is examined such that tracking problems due to spatial deflections of the first-order AO beam at the receiver may be avoided by switching to the undeviated zeroth-order beam.


Anisoplanatic Electromagnetic Image Propagation Through Narrow Or Extended Phase Turbulence Using Altitude-Dependent Structure Parameter, Monish Ranjan Chatterjee, Ali Mohamed Oct 2016

Anisoplanatic Electromagnetic Image Propagation Through Narrow Or Extended Phase Turbulence Using Altitude-Dependent Structure Parameter, Monish Ranjan Chatterjee, Ali Mohamed

Monish R. Chatterjee

The effects of turbulence on anisoplanatic imaging are often modeled through the use of a sequence of phase screens distributed along the optical path. We implement the split-step wave algorithm to examine turbulence-corrupted images.