Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

2018

Discipline
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 37

Full-Text Articles in Physics

Computational Techniques For Scattering Amplitudes, Juliano A. Everett Dec 2018

Computational Techniques For Scattering Amplitudes, Juliano A. Everett

Publications and Research

Scattering amplitudes in quantum field theory can be described as the probability of a scattering process to happen within a high energy particle interaction, as well as a bridge between experimental measurements and the prediction of the theory.

In this research project, we explore the Standard Model of Particle Theory, it’s representation in terms of Feynman diagrams and the algebraic formulas associated with each combination.

Using the FeynArts program as a tool for generating Feynman diagrams, we evaluate the expressions of a set of physical processes, and explain why these techniques become necessary to achieve this goal.


Impact Of Fiber Parameters On Edfa And/Or Raman Amplified High-Spectral-Efficiency Coherent Wdm Transmissions, Lufeng Leng Nov 2018

Impact Of Fiber Parameters On Edfa And/Or Raman Amplified High-Spectral-Efficiency Coherent Wdm Transmissions, Lufeng Leng

Publications and Research

The impact of fiber properties is investigated for coherent systems employing polarization-division multiplexed high-level quadrature amplitude modulation, wavelength-division multiplexing, and erbium-doped fiber amplifier and/or distributed Raman amplification. This is done by comparing the performances of fiber links of various attenuation coefficients and effective areas via experimentally verified analytical methods. Results show that the excess noise, which originates at amplifiers compensating for the losses of filters and switches located between fiber spans, can weaken or even diminish the performance enhancement brought about by lowering the fiber attenuation coefficient, especially if distributed Raman amplification is employed. This leads to the difference in …


Study Of The Kinetic Energy Densities Of Electrons As Applied To Quantum Dots In A Magnetic Field, Marlina Slamet, Viraht Sahni Oct 2018

Study Of The Kinetic Energy Densities Of Electrons As Applied To Quantum Dots In A Magnetic Field, Marlina Slamet, Viraht Sahni

Publications and Research

There are three expressions for the kinetic energy density t(r) expressed in terms of its quantal source, the single‐particle density matrix: tA(r), the integrand of the kinetic energy expectation value; tB(r), the trace of the kinetic energy tensor; tC(r), a virial form in terms of the 'classical' kinetic field. These kinetic energy densities are studied by application to 'artificial atoms' or quantum dots in a magnetic field in a ground and excited singlet state. A comparison with the densities for natural atoms and molecules in their ground state is made. The near nucleus …


The Diverse Magneto-Optical Selection Rules In Bilayer Black Phosphorus, Jhao-Ying Wu, Szu-Chao Chen, Thi-Nga Do, Wu-Pei Su, Godfrey Gumbs, Ming-Fa Lin Sep 2018

The Diverse Magneto-Optical Selection Rules In Bilayer Black Phosphorus, Jhao-Ying Wu, Szu-Chao Chen, Thi-Nga Do, Wu-Pei Su, Godfrey Gumbs, Ming-Fa Lin

Publications and Research

The magneto-optical properties of bilayer phosphorene is investigated by the generalized tight-binding model and the gradient approximation. The vertical inter-Landau-level transitions, being sensitive to the polarization directions, are mainly determined by the spatial symmetries of sub-envelope functions on the distinct sublattices. The anisotropic excitations strongly depend on the electric and magnetic fields. A uniform perpendicular electric field could greatly diversify the selection rule, frequency, intensity, number and form of symmetric absorption peaks. Specifically, the unusual magneto-optical properties appear beyond the critical field as a result of two subgroups of Landau levels with the main and side modes. The rich and …


Interdisciplinary Studies Of Complex Network And Machine Learning And Its Applications, Shaojun Luo Sep 2018

Interdisciplinary Studies Of Complex Network And Machine Learning And Its Applications, Shaojun Luo

Dissertations, Theses, and Capstone Projects

In this dissertation, we introduce the concept of network-based statistical inference methods of two types: network structure inference and variable inference. For network structure inference, we introduce correlation matrix, graphical Lasso, network clustering and identify the influencer in the network. For variable inference, we also introduce from Bayesian network, to Random Markov Field and Ising Model, Boltzmann and Restricted Boltzmann machine and the algorithm of Belief Propagation. Last but not the least, we introduce the most widely used neural network family and its two main types: Convolutional Neural Network and Recurrent Neural Network.

In Chapter 3 we provide an example …


Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw Sep 2018

Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw

Dissertations, Theses, and Capstone Projects

In recent years, defect centers in wide band gap semiconductors such as diamond, have received significant attention. Defects offer great utility as single photon emitters, nanoscale sensors, and quantum memories and registers for quantum computation. Critical to the utility of these defects, is their charge state.

In this dissertation, experiments surrounding the charge state dynamics and the carrier dynamics are performed and analyzed. Extensive studies of the ionization and recombination processes of defects in diamond, specifically, the Nitrogen Vacancy (NV) center, have been performed. Diffusion of ionized charge carriers has been imaged indirectly through the recapture of said carriers by …


Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter Sep 2018

Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter

Dissertations, Theses, and Capstone Projects

This work focuses on the study of electron transport of 2-D electron gas systems in relation to both fundamental properties of the systems such as disorder and scattering mechanisms, as well as unique magnetoresistance (MR) effects. A large portion of the discussion is built around the use of an in plane magnetic field to vary the ratio between the Zeeman energy between electrons of different spins and the Landau level spacing, creating a tool to control the quantization of the density of states (DOS).

This tool is first used to isolate Quantum Positive Magnetoresistance (QPMR), which grants insight to the …


Nmr Characterizations Of Candidate Battery Electrolytes, Stephen A. Munoz Sep 2018

Nmr Characterizations Of Candidate Battery Electrolytes, Stephen A. Munoz

Dissertations, Theses, and Capstone Projects

Enormous strides have been made in next-generation power sources to build a more sustainable society. Energy storage has become a limiting factor in our progress, and there are huge environmental and financial incentives to find the next step forward in battery technology. This work discusses NMR methods for characterizing materials for use in battery application, with a special focus on relaxometry and diffusometry. Examples are provided of various recent investigations involving novel candidate electrolyte materials with different collaborators. Works discussed in this thesis include: the characterization of a new disruptive solid polymer electrolyte technology, investigations of the dynamics of super …


Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz Sep 2018

Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz

Dissertations, Theses, and Capstone Projects

In this thesis I show that greatly increasing the magnitude of a protein’s net charge using surface supercharging transforms that protein into a ligand-gated or counterion-gated conformational molecular switch. To demonstrate this I first modified the designed helical bundle hemoprotein H4 using simple molecular modeling, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. Due to the high surface charge density, ligand binding to this protein is allosterically activated by low concentrations of divalent cations and the polyamine spermine. …


Direct Experimental Evidence Of Toroidal Symmetry In A Lanthanide-Based Molecular Magnet, Qing Zhang Sep 2018

Direct Experimental Evidence Of Toroidal Symmetry In A Lanthanide-Based Molecular Magnet, Qing Zhang

Dissertations, Theses, and Capstone Projects

Molecular magnets (MM) are finite clusters of identical exchange-coupled magnetic systems arranged within a crystalline array such that interactions between neighboring MMs are negligible. Their small size has proven them amenable test beds for the investigation of a wide range of fundamental quantum phenomena such as spin frustration quantum tunneling (QT) of magnetization and Neel vector quantum coherence and Berry phase interference.

Cases where MMs have been found to exhibit quantum wave-functions that evolve coherently are particularly interesting due to their potential for use in quantum information processing. Toroidal magnetic moments, a kind of MM, have fascinating properties that could …


Baryons And Interactions In Magnetic Fields, Amol Deshmukh Sep 2018

Baryons And Interactions In Magnetic Fields, Amol Deshmukh

Dissertations, Theses, and Capstone Projects

The QCD external field problem allows one to probe the rich behavior of strongly interacting systems under external conditions, including the modification of hadron structure and interactions due to external electromagnetic fields. These dynamics, moreover, are likely relevant to describe the physics in the interiors of magnetars and in non-central heavy-ion collisions, for which large magnetic fields upwards of $10^{19}$ Gauss are conceivable. Additionally motivated by lattice QCD calculations in external fields, we study the behavior of single- and two-baryon (specifically, two-nucleon) systems in large magnetic fields. The dependence of single-baryon energies on magnetic fields is explored using chiral dynamics. …


A Network Theoretical Approach To Real-World Problems: Application Of The K-Core Algorithm To Various Systems, Kate Burleson-Lesser Sep 2018

A Network Theoretical Approach To Real-World Problems: Application Of The K-Core Algorithm To Various Systems, Kate Burleson-Lesser

Dissertations, Theses, and Capstone Projects

The study of complex networks is, at its core, an exploration of the mechanisms that control the world in which we live at every scale, from particles no bigger than a grain of sand and amino acids that comprise proteins, to social networks, ecosystems, and even countries. Indeed, we find that, regardless of the physical size of the network's components, we may apply principles of complex network theory, thermodynamics, and statistical mechanics to not only better understand these specific networks, but to formulate theories which may be applied to problems on a more general level. This thesis explores several networks …


Kinetic Effects In 2d And 3d Quantum Dots: Comparison Between High And Low Electron Correlation Regimes, Marlina Slamet, Viraht Sahni Aug 2018

Kinetic Effects In 2d And 3d Quantum Dots: Comparison Between High And Low Electron Correlation Regimes, Marlina Slamet, Viraht Sahni

Publications and Research

Kinetic related ground state properties of a two-electron 2D quantum dot in a magnetic field and a 3D quantum dot (Hooke's atom) are compared in the Wigner high (HEC) and low (LEC) electron correlation regimes. The HEC regime corresponds to low densities sufficient for the creation of a Wigner molecule. The LEC regime densities are similar to those of natural atoms and molecules. The results are determined employing exact closed-form analytical solutions of the Schrödinger-Pauli and Schrödinger equations, respectively. The properties studied are the local and nonlocal quantal sources of the density and the single particle density matrix; the kinetic …


Nanostructured Fibers As A Versatile Photonic Platform: Radiative Cooling And Waveguiding Through Transverse Anderson Localization, Norman Nan Shi, Cheng-Chia Tsai, Michael J. Carter, Jyotirmoy Mandal, Adam C. Overvig, Matthew Y. Sfeir, Ming Lu, Catherine L. Craig, Gary D. Bernard, Yuan Yang, Nanfang Yu Jul 2018

Nanostructured Fibers As A Versatile Photonic Platform: Radiative Cooling And Waveguiding Through Transverse Anderson Localization, Norman Nan Shi, Cheng-Chia Tsai, Michael J. Carter, Jyotirmoy Mandal, Adam C. Overvig, Matthew Y. Sfeir, Ming Lu, Catherine L. Craig, Gary D. Bernard, Yuan Yang, Nanfang Yu

Publications and Research

Broadband high reflectance in nature is often the result of randomly, three-dimensionally structured materials. This study explores unique optical properties associated with one-dimensional nanostructures discovered in silk cocoon fibers of the comet moth, Argema mittrei. The fibers are populated with a high density of air voids randomly distributed across the fiber cross-section but are invariant along the fiber. These filamentary air voids strongly scatter light in the solar spectrum. A single silk fiber measuring ~50 μm thick can reflect 66% of incoming solar radiation, and this, together with the fibers' high emissivity of 0.88 in the mid-infrared range, allows …


Resummation For (Boosted) Top-Quark Pair Production At Nnlo+Nnll' In Qcd, Michał Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott, Xing Wang, Li Lin Yang May 2018

Resummation For (Boosted) Top-Quark Pair Production At Nnlo+Nnll' In Qcd, Michał Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott, Xing Wang, Li Lin Yang

Publications and Research

We construct predictions for top quark pair differential distributions at hadron colliders that combine state-of-the-art NNLO QCD calculations with double resummation at NNLL′ accuracy of threshold logarithms arising from soft gluon emissions and of small mass logarithms. This is the first time a resummed calculation at full NNLO+NNLL′ accuracy in QCD for a process with non-trivial color structure has been completed at the differential level. Of main interest to us is the stability of the $M_{t\bar{t}}$ and top-quark $p_T$ distributions in the boosted regime where fixed order calculations may become strongly dependent on the choice of dynamic scales. With the …


Comparative Study Of Qubits, Juliano A. Everett, Mubinjon Satymov, Zechariah Ilmot May 2018

Comparative Study Of Qubits, Juliano A. Everett, Mubinjon Satymov, Zechariah Ilmot

Publications and Research

In quantum computing, a quantum bit ("qubit") is a unit of quantum information. A qubit is a two-level quantum system. The developing of qubits with optimal properties, related to quantum entanglement and possibilities of control the states of qubits, is very important for quantum computing applications. We analyzed various types of qubits. There are at least five major quantum computing approaches being explored worldwide: silicon spin qubits, ion traps, superconducting loops, diamond vacancies and topological qubits. We compared the advantages and disadvantages in the properties of all these qubits for applications for quantum computing. We analyzed possible strategies to improve …


Physical Applications Of The Geometric Minimum Action Method, George L. Poppe Jr. May 2018

Physical Applications Of The Geometric Minimum Action Method, George L. Poppe Jr.

Dissertations, Theses, and Capstone Projects

This thesis extends the landscape of rare events problems solved on stochastic systems by means of the \textit{geometric minimum action method} (gMAM). These include partial differential equations (PDEs) such as the real Ginzburg-Landau equation (RGLE), the linear Schroedinger equation, along with various forms of the nonlinear Schroedinger equation (NLSE) including an application towards an ultra-short pulse mode-locked laser system (MLL).

Additionally we develop analytical tools that can be used alongside numerics to validate those solutions. This includes the use of instanton methods in deriving state transitions for the linear Schroedinger equation and the cubic diffusive NLSE.

These analytical solutions are …


Standard And Anomalous Wave Transport Inside Random Media, Xujun Ma May 2018

Standard And Anomalous Wave Transport Inside Random Media, Xujun Ma

Dissertations, Theses, and Capstone Projects

This thesis is a study of wave transport inside random media using random matrix theory. Anderson localization plays a central role in wave transport in random media. As a consequence of destructive interference in multiple scattering, the wave function decays exponentially inside random systems. Anderson localization is a wave effect that applies to both classical waves and quantum waves. Random matrix theory has been successfully applied to study the statistical properties of transport and localization of waves. Particularly, the solution of the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation gives the distribution of transmission.

For wave transport in standard one dimensional random systems in …


N-Representability In The Quantum Kernel Energy Method, Walter Polkosnik May 2018

N-Representability In The Quantum Kernel Energy Method, Walter Polkosnik

Dissertations, Theses, and Capstone Projects

The Kernel Energy Method (KEM) delivers accurate full molecule energies using less computational resources than standard ab-initio quantum chemical approaches. KEM achieves this efficiency by decomposing a system of atoms into disjoint subsets called kernels. The results of full ab-initio calculations on each individual single kernel and on each double kernel formed by the union of each pair of single kernels are combined in an equation of a form that is specific to KEM to provide an approximation to the full molecule energy. KEM has been demonstrated to give accurate molecular energies over a wide range of systems, chemical methods …


Finding Paths Via Quantum Systems And Its Application For Quantum Algorithms, Daniel S. Koch May 2018

Finding Paths Via Quantum Systems And Its Application For Quantum Algorithms, Daniel S. Koch

Dissertations, Theses, and Capstone Projects

The field of Quantum Information Theory provides the theoretical foundation for the pursuit of quantum computers. The ongoing questions of how quantum computers will be realized and what they will achieve, are both very uncertain. However, worldwide efforts are beginning to converge on some answers, and the future of quantum computers is looking brighter than ever. In contribution to the grand goal that is quantum computing, this thesis serves as a demonstration to the usefulness of quantum over classical computing. The central theme of my work, and my collaborators, is the exploration of using quantum systems as a tool for …


Optimization Of Cuinxga1-Xse2 Solar Cells With Post Selenization, Zehra Cevher May 2018

Optimization Of Cuinxga1-Xse2 Solar Cells With Post Selenization, Zehra Cevher

Dissertations, Theses, and Capstone Projects

The chalcopyrite semiconductor CuInxGa1-xSe2 is considered as the most promising material for high efficiency thin film solar cells due to its exceptional radiation stability, tunable direct bandgap, high light absorption coefficient and low cost preparation methods. In this thesis, we present the systematic investigation of the deposition conditions to optimize the CuInxGa1-xSe2 device performance using the two-step deposition method. Further, we utilized nonlinear optical methods to investigate the deposition parameters to optimize the bulk and interface properties of photovoltaic devices.

First, we investigated the deposition parameters to optimize the structural, …


Pregnancy Induced Alterations Of Reproductive Tract Collagen And Elastin In A Murine Model, Basant K. Dhital May 2018

Pregnancy Induced Alterations Of Reproductive Tract Collagen And Elastin In A Murine Model, Basant K. Dhital

Dissertations, Theses, and Capstone Projects

This thesis reports on structural and dynamical modifications of reproductive tract elastin and collagen as a function of parity. Pelvic floor dysfunction, including pelvic organ prolapse (POP) is a major concern affecting female health worldwide, leading to surgeries costing billions of dollars annually. Collagen, elastic fibers, and proteoglycans are major extracellular matrix (ECM) components found in connective tissues. Vaginal child birth, advancing age, and disruption or dysfunction of connective tissue are major risk factors of POP. In the female reproductive tract, the assembly of elastic fibers is crucial for the pelvic floor support. Any disturbance in the synthesis, assembly, and …


The Advection-Diffusion Equation And The Enhanced Dissipation Effect For Flows Generated By Hamiltonians, Michael Kumaresan May 2018

The Advection-Diffusion Equation And The Enhanced Dissipation Effect For Flows Generated By Hamiltonians, Michael Kumaresan

Dissertations, Theses, and Capstone Projects

We study the Cauchy problem for the advection-diffusion equation when the diffusive parameter is vanishingly small. We consider two cases - when the underlying flow is a shear flow, and when the underlying flow is generated by a Hamiltonian. For the former, we examine the problem on a bounded domain in two spatial variables with Dirichlet boundary conditions. After quantizing the system via the Fourier transform in the first spatial variable, we establish the enhanced-dissipation effect for each mode. For the latter, we allow for non-degenerate critical points and represent the orbits by points on a Reeb graph, with vertices …


Multi Institutional Quantitative Phantom Study Of Yttrium-90 Pet In Pet/Mri: The Mr-Quest Study, Nicole M. Maughan, Mootaz Eldib, David Faul, Maurizio Conti, Mattijs Elschot, Karin Knešaurek, Francesca Leek, David Townsend, Frank P. Difilippo, Kimberly Jackson, Stephan G. Nekolla, Mathias Lukas, Michael Tapner, Parag J. Parikh, Richard Laforest Apr 2018

Multi Institutional Quantitative Phantom Study Of Yttrium-90 Pet In Pet/Mri: The Mr-Quest Study, Nicole M. Maughan, Mootaz Eldib, David Faul, Maurizio Conti, Mattijs Elschot, Karin Knešaurek, Francesca Leek, David Townsend, Frank P. Difilippo, Kimberly Jackson, Stephan G. Nekolla, Mathias Lukas, Michael Tapner, Parag J. Parikh, Richard Laforest

Publications and Research

Background

Yttrium-90 (90Y) radioembolization involves the intra-arterial delivery of radioactive microspheres to treat hepatic malignancies. Though this therapy involves careful pre-treatment planning and imaging, little is known about the precise location of the microspheres once they are administered. Recently, there has been growing interest post-radioembolization imaging using positron-emission tomography (PET) for quantitative dosimetry and identifying lesions that may benefit from additional salvage therapy. In this study, we aim to measure the inter-center variability of 90Y PET measurements as measured on PET/MRI in preparation for a multi-institutional prospective phase I/II clinical trial.

Eight institutions participated in this study …


Diy Science Sims, James Hedberg Apr 2018

Diy Science Sims, James Hedberg

Open Educational Resources

No abstract provided.


Anomalous Electromagnetic Transport In Compact Stars, Efrain J. Ferrer, Vivian De La Incera Mar 2018

Anomalous Electromagnetic Transport In Compact Stars, Efrain J. Ferrer, Vivian De La Incera

Publications and Research

We study the anomalous electromagnetic transport properties of a quark-matter phase that can be realized in the presence of a magnetic field in the low-temperature/moderate-high-density region of the Quantum Chromodynamics (QCD) phase map. In this so-called Magnetic Dual Chiral Density Wave phase, an inhomogeneous condensate is dynamically induced producing a nontrivial topology, a consequence of the asymmetry of the lowest Landau level modes of the quasiparticles in this phase. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFµνµν, with an axion field θ given by the phase of the Dual …


Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni Mar 2018

Dissipation Effects In Schrödinger And Quantal Density Functional Theories Of Electrons In An Electromagnetic Field, Xiao-Yin Pan, Viraht Sahni

Publications and Research

Dissipative effects arise in an electronic system when it interacts with a time-dependent environment. Here, the Schrödinger theory of electrons in an electromagnetic field including dissipative effects is described from a new perspective. Dissipation is accounted for via the effective Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of the individual electron: the corresponding equation of motion for the electron or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law, each electron experiences an external field comprised of a binding electric field, the Lorentz field, and the electromagnetic field. In addition, …


Information Content, Charge Transport Properties, And Computational Capacities Of Proteins, Joseph Murphy Brisendine Jr. Feb 2018

Information Content, Charge Transport Properties, And Computational Capacities Of Proteins, Joseph Murphy Brisendine Jr.

Dissertations, Theses, and Capstone Projects

This thesis is the beginning of an attempt to build a coherent theory of the properties of proteins based in information theory and the duality of information theory and nonequilibrium thermodynamics. Throughout, we will adopt the viewpoint that information can act as a thermodynamic potential, which is necessary to understand how biological processes are both enabled and constrained by the laws of thermodynamics. Understanding information as a form of thermodynamic potential also clarifies the description of proteins and other biological macromolecules as “molecular machines”: meso-scale structures with emergent causal powers which perform work on their environments by irreversibly dissipating energy …


Investigation Of Novel Electrolytes For Use In Lithium-Ion Batteries And Direct Methanol Fuel Cells, Kartik Pilar Feb 2018

Investigation Of Novel Electrolytes For Use In Lithium-Ion Batteries And Direct Methanol Fuel Cells, Kartik Pilar

Dissertations, Theses, and Capstone Projects

Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite …


Effects Of Structural And Electronic Disorder In Topological Insulator Sb2te3 Thin Films, Inna Korzhovska Feb 2018

Effects Of Structural And Electronic Disorder In Topological Insulator Sb2te3 Thin Films, Inna Korzhovska

Dissertations, Theses, and Capstone Projects

Topological quantum matter is a unique and potentially transformative protectorate against disorder-induced backscattering. The ultimate disorder limits to the topological state, however, are still not known - understanding these limits is critical to potential applications in the fields of spintronics and information processing. In topological insulators spin-orbit interaction and time-reversal-symmetry invariance guarantees - at least up to a certain disorder strength - that charge transport through 2D gapless Dirac surface states is robust against backscattering by non-magnetic disorder. Strong disorder may destroy topological protection and gap out Dirac surface states, although recent theories predict that under severe electronic disorder a …