Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

2014

Discipline
Keyword
Publication
Publication Type

Articles 1 - 30 of 41

Full-Text Articles in Physics

Nuclear Structure Aspects Of Neutrinoless Double Beta Decay, B. Alex Brown, Mihai Horoi, Roman A. Sen′Kov Dec 2014

Nuclear Structure Aspects Of Neutrinoless Double Beta Decay, B. Alex Brown, Mihai Horoi, Roman A. Sen′Kov

Publications and Research

We decompose the neutrinoless double-beta decay matrix elements into sums of products over the intermediate nucleus with two less nucleons. We find that the sum is dominated by the J^pi=0^+ ground state of this intermediate nucleus for both the light and heavy neutrino decay processes. This provides a new theoretical tool for comparing and improving nuclear structure models. It also provides the connection to two-nucleon transfer experiments.


C-Metrics In Gauged Stu Supergravity And Beyond, H. Lu, Justin F. Vázquez-Poritz Dec 2014

C-Metrics In Gauged Stu Supergravity And Beyond, H. Lu, Justin F. Vázquez-Poritz

Publications and Research

We construct charged generalizations of the dilaton C-metric in various fourdimensional theories, including STU gauged supergravity as well as a one-parameter family of Einstein-Maxwell-dilaton theories whose scalar potential can be expressed in terms of a superpotential. In addition, we present time-dependent generalizations of the dilaton C-metric and dilaton Ernst solutions, for which the time evolution is driven by the dilaton. These C-metric solutions provide holographic descriptions of a strongly-coupled three-dimensional field theory on the background of a black hole, a gravitational soliton, and a black hole undergoing time evolution.


Performance Analysis Of A Hybrid Raman Optical Parametric Amplifier In The O- And E-Bands For Cwdm Pons, Sasanthi Peiris, Nicolas Madamopoulos, Neophytos A. Antoniades, Dwight Richards, Roger Dorsinville Dec 2014

Performance Analysis Of A Hybrid Raman Optical Parametric Amplifier In The O- And E-Bands For Cwdm Pons, Sasanthi Peiris, Nicolas Madamopoulos, Neophytos A. Antoniades, Dwight Richards, Roger Dorsinville

Publications and Research

We describe a hybrid Raman-optical parametric amplifier (HROPA) operating at the O- and E-bands and designed for coarse wavelength division multiplexed (CWDM) passive optical networks (PONs). We present the mathematical model and simulation results for the optimization of this HROPA design. Our analysis shows that separating the two amplification processes allows for optimization of each one separately, e.g., proper selection of pump optical powers and wavelengths to achieve maximum gain bandwidth and low gain ripple. Furthermore, we show that the proper design of optical filters incorporated in the HROPA architecture can suppress idlers generated during the OPA process, as well …


Nnlo Hard Functions In Massless Qcd, Alessandro Broggio, Andrea Ferroglia, Ben D. Pecjak, Zhibai Zhang Dec 2014

Nnlo Hard Functions In Massless Qcd, Alessandro Broggio, Andrea Ferroglia, Ben D. Pecjak, Zhibai Zhang

Publications and Research

We derive the hard functions for all 2 → 2 processes in massless QCD up to next-to-next-to-leading order (NNLO) in the strong coupling constant. By employing the known one- and two-loop helicity amplitudes for these processes, we obtain analytic expressions for the ultraviolet and infrared finite, minimally subtracted hard functions, which are matrices in color space. These hard functions will be useful in carrying out higher-order resummations in processes such as dijet and highly energetic top-quark pair production by means of soft-collinear effective theory methods.


Near Horizon Geometry Of Strings Ending On Intersecting D8/D4-Branes, J. Estes, D. Krym, B. Van Pol Oct 2014

Near Horizon Geometry Of Strings Ending On Intersecting D8/D4-Branes, J. Estes, D. Krym, B. Van Pol

Publications and Research

We consider solutions of massive IIA supergravity corresponding to the half- BPS intersection of D8/D4-branes with fundamental strings. The 1 + 1-dimensional intersection preserves the symmetry D(2, 1; ; 1) × SO(4). We give a reduction and partial integration of the BPS equations for this symmetry group. We then specialize to the cases of enhanced supersymmetry corresponding to = −1/2,−2 or = 1. In the first case, we show that the only solution with enhanced symmetry is given by the AdS6 geometry describing the near horizon geometry of D8/D4-branes in the presence of an O8-plane. In the second case, we …


End Of The Cosmic Neutrino Energy Spectrum, Luis A. Anchordoqui, V. Barger, H. Goldberg, J.G. Learned, D. Marfatia, S. Pakvasa, T. C. Paul, T. J. Weiler Oct 2014

End Of The Cosmic Neutrino Energy Spectrum, Luis A. Anchordoqui, V. Barger, H. Goldberg, J.G. Learned, D. Marfatia, S. Pakvasa, T. C. Paul, T. J. Weiler

Publications and Research

There may be a high-energy cutoff of neutrino events in IceCube data. In particular, IceCube does not observe either continuum events above 2PeV, or the Standard Model Glashow-resonance events expected at 6.3PeV. There are also no higher energy neutrino signatures in the ANITA and Auger experiments. This absence of high-energy neutrino events motivates a fundamental restriction on neutrino energies above a few PeV. We postulate a simple scenario to terminate the neutrino spectrum that is Lorentz-invariance violating, but with a limiting neutrino velocity that is always smaller than the speed of light. If the limiting velocity of the neutrino applies …


Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov Oct 2014

Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov

Dissertations, Theses, and Capstone Projects

Over the last five years of my research work, I, my research was mainly concerned with certain crucial tunneling, transport and optical properties of novel low-dimensional graphitic and carbon-based materials as well as topological insulators. Both single-electron and many-body problems were addressed. We investigated the Dirac electrons transmission through a potential barrier in the presence of circularly polarized light. An anomalous photon-assisted enhanced transmission is predicted and explained in a comparison with the well-known Klein paradox. It is demonstrated that the perfect transmission for nearly-head-on collision in an infinite graphene is suppressed in gapped dressed states of electrons, which is …


Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy Oct 2014

Control Of Light-Matter Interaction Via Dispersion Engineering, Harish Natarajan Swaha Krishnamoorthy

Dissertations, Theses, and Capstone Projects

This thesis describes the design, fabrication and characterization of certain nanostructures to engineer light-matter interaction. These materials have peculiar dispersion properties owing to their structural design, which is exploited to control spontaneous emission properties of emitters such as quantum dots and dye molecules. We will discuss two classes of materials based on the size of their unit cell compared to the wavelength of the electromagnetic radiation they interact with. The first class are hyperbolic metamaterials (HMM) composed of alternate layers of a metal and a dielectric of thicknesses much smaller than the wave- length. Using a HMM composed of silver …


Second Quantum State Transition In Gaas/Algaas Resonant Bragg Structure Probed By Modulation Reflectance Spectroscopy, Yuechao Chen Oct 2014

Second Quantum State Transition In Gaas/Algaas Resonant Bragg Structure Probed By Modulation Reflectance Spectroscopy, Yuechao Chen

Dissertations, Theses, and Capstone Projects

Modulation spectroscopy, ever since its introduction by B.O. Seraphin in 1964, has been considered and widely used as a sensitive experiment technique for studying and characterizing the properties of varieties of semiconductor materials. Compared to general optical reflectance spectrum which measures the absolute reflection, the modulation spectroscopy evaluates the interpretation of the changes in the optical response from the sample caused by a periodic physical perturbation applied to the sample, such as temperature, electric fields, hydrostatic pressure, uniaxial stress, etc.Those modulation spectroscopies with an external electric field perturbation are known as electroreflectance spectroscopy, which provides sharp and derivative-like spectral features …


Spontaneous Time-Reversal Symmetry Breaking In Two Dimensional Electronic Systems, Wei Liu Oct 2014

Spontaneous Time-Reversal Symmetry Breaking In Two Dimensional Electronic Systems, Wei Liu

Dissertations, Theses, and Capstone Projects

The discovery of high temperature superconductivity inspired a number of novel proposals, one of which, put forward by C.M.Varma, involves the breaking of time-reversal symmetry to explain the physics of the underdoped pseudogap phase. It was proposed that time-reversal symmetry is spontaneously broken as a result of strong repulsion between the Cu-O electrons to form loop-currents in the system.

In this work, we developed a general theory to study the quantum phase transitions in the 2 dimensional strongly interacting electronic systems in which time-reversal symmetry is spontaneously broken in the ground state. We first applied the theory of magnetic groups …


Quantum Crystallography Of Hydronium Cations, Sonjae Sycoria Wallace Oct 2014

Quantum Crystallography Of Hydronium Cations, Sonjae Sycoria Wallace

Dissertations, Theses, and Capstone Projects

Cationic hydronium clusters of the form [HaOb]^c,(c>0), have been investigated. After investigating over 2000 crystal structures containing hydronium cations found in the Cambridge Structural Database. The hydronium cationic compounds that were most unusual, mischaracterized, or those of apparent aggregates, were investigated further by geometry optimization and in some cases with the Quantum Theory of Atoms in Molecules (QTAIM). The results of our investigations yielded the first reports of stable conformations of cyclic dihydronium cationic clusters. In a second investigation we reported the first theoretically confirmed transition state of a H7O3+conformer captured within a crystal. A third product from our …


Nuclear Magnetic Resonance Studies On Lithium And Sodium Electrode Materials For Rechargeable Batteries, Tetiana Nosach Oct 2014

Nuclear Magnetic Resonance Studies On Lithium And Sodium Electrode Materials For Rechargeable Batteries, Tetiana Nosach

Dissertations, Theses, and Capstone Projects

In this thesis, Nuclear Magnetic Resonance (NMR) spectroscopic techniques are used to study lithium and sodium electrode materials for advanced rechargeable batteries. Three projects are described in this thesis. The first two projects involve 6Li, 7Li and 31P NMR studies of two cathode materials for advanced rechargeable batteries. The third project is a study of sodium titanate cathode materials for Na-ion batteries, where 1H, 7Li, and 23Na static and magic angle spinning NMR were used in order to obtain detailed information on the chemical environments.


Dynamics Of Nanoparticles In Fluids And At Interfaces, Weikang Chen Oct 2014

Dynamics Of Nanoparticles In Fluids And At Interfaces, Weikang Chen

Dissertations, Theses, and Capstone Projects

In this thesis, we use molecular dynamics simulation to study three basic behaviors or properties of nanoparticles: deposition during droplets evaporation, slip boundary condition and Brownian motion. These three problems address the need for an in-depth understanding of the dynamics of nanoparticles in fluids and at interfaces. In the first problem, evaporation of the droplets dispersed with particles, we investigated the distribution of evaporative flux, inner flow field, density and temperature. And we use these numerical experiments to check on our hydrodynamic theory of the "coffee ring" phenomenon. The simulations reveal the connection between the particle interactions and the deposit …


All At One Point: The New Physics Of Italo Calvino And Jorge Luis Borges, Mark Thomas Rinaldi Oct 2014

All At One Point: The New Physics Of Italo Calvino And Jorge Luis Borges, Mark Thomas Rinaldi

Dissertations, Theses, and Capstone Projects

This work of comparative literary criticism focuses on the presence of mathematical and scientific concepts and imagery in the works of Italo Calvino and Jorge Luis Borges, beginning with an historical overview of scientific philosophy and an introduction to the most significant scientific concepts of the last several centuries, before shifting to deep, scientifically-driven analyses of numerous individual fictions, and finally concluding with a meditation on the unexpectedly fictive aspects of science and mathematics. The close readings of these authors' fictions are contextualized with thorough explanations of the potential literary implications of theories from physics, mathematics, neuroscience and chaos theory. …


Message Passing Techniques For Statistical Physics And Optimization In Complex Systems, Lin Bo Oct 2014

Message Passing Techniques For Statistical Physics And Optimization In Complex Systems, Lin Bo

Dissertations, Theses, and Capstone Projects

Optimization problem has always been considered as a central topic in various areas of science and engineering. It aims at finding the configuration of a large number of variables with which the objective function is optimal. The close relation between optimization problems and statistical physics through the probability measure of the Boltzmann type has brought new theoretical tools from statistical physics of disordered systems to optimization problems. In this thesis, we use message passing techniques, in particular cavity method, developed in the last decades within spin glass theory to study optimization problems in complex systems. In the study of force …


Characterization Of Wide Band Gap Semiconductors And Multiferroic Materials, Bo Cai Oct 2014

Characterization Of Wide Band Gap Semiconductors And Multiferroic Materials, Bo Cai

Dissertations, Theses, and Capstone Projects

Structural, optical and electrical properties of zinc oxide (ZnO), aluminum nitride (AlN), and lutetium ferrite (LuFe2O4) have been investigated. Temperature dependent Hall Effect measurements were performed between 80 and 800 K for phosphorus (P) and arsenic (As) doped ZnO thin films grown on c-plane sapphire substrate by RF magnetron sputtering. These samples exhibited n-type conductivity throughout the temperature range with carrier concentration of 3.85 × 10 16 cm-3 and 3.65 × 10 17 cm-3 at room temperature for P-doped and As-doped ZnO films, respectively. The Arrhenius plots of free electron concentration of those doped samples showed …


Variable Pressure Nuclear Magnetic Resonance Studies Of Ionic Liquids And Electrophoretic Probe Design, Armando Julio Rua Oct 2014

Variable Pressure Nuclear Magnetic Resonance Studies Of Ionic Liquids And Electrophoretic Probe Design, Armando Julio Rua

Dissertations, Theses, and Capstone Projects

Energy storage materials play a key role in, efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. The improve efficiency of energy use stimulates the development of energy storage such as batteries or super capacitors, toward higher power and energy density, which significantly depends upon the advancement of new materials used in these devices. The new materials need better understanding and description in the electrochemical properties. Nuclear Magnetic Resonance (NMR) has been an important tool in the characterization of ionic liquids and solids. The measurements of the relaxation times and the diffusion coefficient …


Optical Spectroscopy Of Xenon-Related Defects In Diamond, Yury Dziashko Oct 2014

Optical Spectroscopy Of Xenon-Related Defects In Diamond, Yury Dziashko

Dissertations, Theses, and Capstone Projects

The work presents the results of optical studies of Xe-related defect in diamond. This defect is one of a few having narrow zero-phonon line in the near-infrared part of the photo-luminescence spectra. It appears in diamond after Xe+ ion implantation followed by thermal annealing. Given unique physical properties of diamond (hardness, optical transparency in wide spectral range, chemical inertness, high thermal conductivity, low thermal expansion coefficient) and stability of Xe-related center it can be viewed as an potential candidate for the source of single-photons, or as optically manipulated qubit, not unlike nitrogen-vacancy center. However, compared to the latter Xe-related center …


Control Of Exciton Photon Coupling In Nano-Structures, Xiaoze Liu Oct 2014

Control Of Exciton Photon Coupling In Nano-Structures, Xiaoze Liu

Dissertations, Theses, and Capstone Projects

In this thesis, we study the interaction of excitons with photons and plasmons and methods to control and enhance this interaction. This study is categorized in three parts: light-matter interaction in microcavity structures, direct dipole-dipole interactions, and plasmon-exciton interaction in metal-semiconductor systems.

In the microcavity structures, the light-matter interactions become significant when the excitonic energy is in resonance with microcavity photons. New hybrid quantum states named polariton states will be formed if the strong coupling regime is achieved, where the interaction rate is faster than the average decay rate of the excitons and photons. Polaritons have been investigated in zinc …


Finite N And The Failure Of Bulk Locality: Black Holes In Ads/Cft, Daniel N. Kabat, Gilad Lifschytz Sep 2014

Finite N And The Failure Of Bulk Locality: Black Holes In Ads/Cft, Daniel N. Kabat, Gilad Lifschytz

Publications and Research

We consider bulk quantum fields in AdS/CFT in the background of an eter- nal black hole. We show that for black holes with finite entropy, correlation functions of semiclassical bulk operators close to the horizon deviate from their semiclassical value and are ill-defined inside the horizon. This is due to the large-time behavior of correlators in a unitary CFT, and means the region near and inside the horizon receives corrections. We give a prescription for modifying the definition of a bulk field in a black hole background, such that one can still define operators that mimic the inside of the …


Gosam-2.0: A Tool For Automated One-Loop Calculations Within Thestandard Model And Beyond, Gavin Cullen, Hans Van Deurzen, Nicolas Greiner, Gudrun Heinrich, Gionata Luisoni, Pierpaolo Mastrolia, Edoardo Mirabella, Giovanni Ossola, Tiziano Peraro, Johannes Schlenk, Johann Felix Von Soden-Fraunhofen, Francesco Tramontano Aug 2014

Gosam-2.0: A Tool For Automated One-Loop Calculations Within Thestandard Model And Beyond, Gavin Cullen, Hans Van Deurzen, Nicolas Greiner, Gudrun Heinrich, Gionata Luisoni, Pierpaolo Mastrolia, Edoardo Mirabella, Giovanni Ossola, Tiziano Peraro, Johannes Schlenk, Johann Felix Von Soden-Fraunhofen, Francesco Tramontano

Publications and Research

We present the version 2.0 of the program pack-ageGoSamfor the automated calculation of one-loop ampli-tudes.GoSamis devised to compute one-loop QCD and/orelectroweak corrections to multi-particle processes withinand beyond the Standard Model. The new code containsimprovements in the generation and in the reduction of theamplitudes, performs better in computing time and numer-ical accuracy, and has an extended range of applicability.The extended version of the “Binoth-Les-Houches-Accord”interface to Monte Carlo programs is also implemented. Wegive a detailed description of installation and usage of thecode, and illustrate the new features in dedicated examples.


Wigner High-Electron-Correlation Regime Of Nonuniform Density Systems: A Quantal-Density-Functional-Theory Study, Douglas Achan, Lou Massa, Viraht Sahni Aug 2014

Wigner High-Electron-Correlation Regime Of Nonuniform Density Systems: A Quantal-Density-Functional-Theory Study, Douglas Achan, Lou Massa, Viraht Sahni

Publications and Research

The Wigner regime of a system of electrons in an external field is characterized by a low electron density and a high electron-interaction energy relative to the kinetic energy. The low-correlation regime is in turn described by a high electron density and an electron-interaction energy smaller than the kinetic energy. The Wigner regime of a nonuniform-electron-density system is investigated via quantal density functional theory (QDFT). Within QDFT, the contributions of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, and correlation-kinetic effects are separately delineated and explicitly defined. The nonuniform-electron-density system studied is that of the Hooke's atom in …


Looking For Cosmic Neutrino Background, Chiaki Yanagisawa Jun 2014

Looking For Cosmic Neutrino Background, Chiaki Yanagisawa

Publications and Research

Since the discovery of neutrino oscillation in atmospheric neutrinos by the Super-Kamiokande experiment in 1998, study of neutrinos has been one of exciting fields in high-energy physics. All the mixing angles were measured. Quests for (1) measurements of the remaining parameters, the lightest neutrino mass, the CP violating phase(s), and the sign of mass splitting between the mass eigenstates m3 and m1, and (2) better measurements to determine whether the mixing angle θ23 is less than π/4, are in progress in a well-controlled manner. Determining the nature of neutrinos, whether they are Dirac or Majorana particles …


Initial Conditions In High-Energy Collisions, Elena Petreska Jun 2014

Initial Conditions In High-Energy Collisions, Elena Petreska

Dissertations, Theses, and Capstone Projects

This thesis is focused on the initial stages of high-energy collisions in the saturation regime. We start by extending the McLerran-Venugopalan distribution of color sources in the initial wave-function of nuclei in heavy-ion collisions. We derive a fourth-order operator in the action and discuss its relevance for the description of color charge distributions in protons in high-energy experiments. We calculate the dipole scattering amplitude in proton-proton collisions with the quartic action and find an agreement with experimental data. We also obtain a modification to the fluctuation parameter of the negative binomial distribution of particle multiplicities in proton-proton experiments. The result …


Yang-Mills Theories As Deformations Of Massive Integrable Models, Axel Cortes Cubero Jun 2014

Yang-Mills Theories As Deformations Of Massive Integrable Models, Axel Cortes Cubero

Dissertations, Theses, and Capstone Projects

Yang Mills theory in 2+1 dimensions can be expressed as an array of coupled (1+1)-dimensional principal chiral sigma models. The SU(N) principal chiral sigma model in 1+1 dimensions is integrable, asymptotically free and has massive excitations. We calculate all the form factors and two- point correlation functions of the Noether current and energy-momentum tensor, in

't Hooft's large-N limit (some form factors can be found even at finite N). We use these new form factors to calculate physical quantities in (2+1)-dimensional Yang-Mills theory, generalizing previous SU(2) by P. Orland to SU(N). The anisotropic gauge theory is related to standard isotropic …


Dynamics And Manipulation Of Nanomagnets, Liufei Cai Jun 2014

Dynamics And Manipulation Of Nanomagnets, Liufei Cai

Dissertations, Theses, and Capstone Projects

This thesis presents my work on the spin dynamics of nanomagnets and investigates the possibility of manipulating nanomagnets by various means. Most of the work has been published\cite{LC-PRB2010, LC-PRB2012, LC-PRB2013, LC-EPL2014}. Some has been submitted for publication\cite{LC-arxiv2014}. The structure of this thesis is as follows.

In Chapter 1, I present the theory of manipulation of a nanomagnet by rotating ac fields whose frequency is time dependent. Theory has been developed that maps the problem onto Landau-Zener problem. For the linear frequency sweep the switching phase diagrams are obtained on the amplitude of the ac field and the frequency sweep rate. …


The Evolution Of And Starburst-Agn Connection In Luminous And Ultraluminous Infrared Galaxies And Their Link To Globular Cluster Formation, Stephanie L. Fiorenza Jun 2014

The Evolution Of And Starburst-Agn Connection In Luminous And Ultraluminous Infrared Galaxies And Their Link To Globular Cluster Formation, Stephanie L. Fiorenza

Dissertations, Theses, and Capstone Projects

The evolutionary connection between nuclear starbursts and active galactic nuclei (AGN) in luminous infrared galaxies (LIRGs; 1011o

Using new spectrophotometric data, I classify the primary source of IR radiation as being a nuclear starburst or a type of AGN by using the Baldwin-Phillips-Terlevich (BPT) diagrams. I show that for the U/LIRGs in my sample the properties that describe their nuclear starbursts and AGN (e.g. star formation rate (SFR), L[O III], optical D parameter, D4000, and EW(Hδ)) are independent of one another, ensuring that no biases affect correlations between these properties and objects' locations on the BPT diagrams. I then derive …


Multi-Leg One-Loop Massive Amplitudes From Integrand Reduction Via Laurent Expansion, Hans Van Deurzen, Gionata Luisoni, Pierpaolo Mastrolia, Edoardo Mirabella, Giovanni Ossola, Tiziano Peraro Mar 2014

Multi-Leg One-Loop Massive Amplitudes From Integrand Reduction Via Laurent Expansion, Hans Van Deurzen, Gionata Luisoni, Pierpaolo Mastrolia, Edoardo Mirabella, Giovanni Ossola, Tiziano Peraro

Publications and Research

We present the application of a novel reduction technique for one-loop scattering amplitudes based on the combination of the integrand reduction and Laurent expansion. We describe the general features of its implementation in the computer code Ninja, and its interface to GoSam. We apply the new reduction to a series of selected processes involving massive particles, from six to eight legs.


Nnll Momentum-Space Resummation For Stop-Pair Production At The Lhc, Alessandro Broggio, Andrea Ferroglia, Matthias Neubert, Leonardo Vernazza, Li Lin Yang Mar 2014

Nnll Momentum-Space Resummation For Stop-Pair Production At The Lhc, Alessandro Broggio, Andrea Ferroglia, Matthias Neubert, Leonardo Vernazza, Li Lin Yang

Publications and Research

If supersymmetry near the TeV scale is realized in Nature, the pair production of scalar top squarks is expected to be observable at the Large Hadron Collider. Recently, effective field-theory methods were employed to obtain approximate predictions for the cross section for this process, which include soft-gluon emission effects up to nextto- next-to-leading order (NNLO) in perturbation theory. In this work we employ the same techniques to resum soft-gluon emission effects to all orders in perturbation theory and with next-to-next-to-logarithmic (NNLL) accuracy. We analyze the effects of NNLL resummation on the stop-pair production cross section by obtaining NLO+NNLL predictions in …


Planar Waveguide Structures For Post-Edfa Broadband Near Infrared Optical Amplifiers, Islam Hoxha Feb 2014

Planar Waveguide Structures For Post-Edfa Broadband Near Infrared Optical Amplifiers, Islam Hoxha

Dissertations, Theses, and Capstone Projects

This thesis reports on optical gain of up to 5.7 dB from a planar waveguide with core made of tetravalent chromium-doped calcium germanate single crystal.