Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Proof Of Concept And Experimental Design For Remote Laser Evaporative Molecular Absorption Spectroscopy Sensor System (R-Lema), Amber Jessica Sucich Jun 2019

Proof Of Concept And Experimental Design For Remote Laser Evaporative Molecular Absorption Spectroscopy Sensor System (R-Lema), Amber Jessica Sucich

Physics

As the Earth’s resources are diminishing, it has become clear that the human race needs to find alternative resources and replenish the Earth’s natural reservoir. One way to do this is to consider interstellar objects. Interstellar objects, such as asteroids, offer mineral and other resources with great potential for mining. Before considering mining a rocky body, it is imperative to first know the complete composition of an object. Using the method of traveling to the objects, drilling into them, and bringing back samples is impractical, inefficient, and expensive. This method is also limiting, as only certain target areas of the …


Multispectral Identification Array, Zachary D. Eagan Jun 2017

Multispectral Identification Array, Zachary D. Eagan

Computer Engineering

The Multispectral Identification Array is a device for taking full image spectroscopy data via the illumination of a subject with sixty-four unique spectra. The array combines images under the illumination spectra to produce an approximate reflectance graph for every pixel in a scene. Acquisition of an entire spectrum allows the array to differentiate objects based on surface material. Spectral graphs produced are highly approximate and should not be used to determine material properties, however the output is sufficiently consistent to allow differentiation and identification of previously sampled subjects. While not sufficiently advanced for use as a replacement to spectroscopy the …


Low Intensity Gamma-Ray Spectroscopy Of The Lake Labyrinth Meteorite, Tristan C. Paul Sep 2015

Low Intensity Gamma-Ray Spectroscopy Of The Lake Labyrinth Meteorite, Tristan C. Paul

Physics

A 23.7g fragment of the Lake Labyrinth Meteorite (fell in 1924, collected in 1934 at Lake Labyrinth in South Australia, Australia) was re-investigated for evidence of the presence of 98Tc using a two dimensional low-intensity gamma-ray spectrometer. A new calibration technique using 26Al sources found the gamma-rays previously thought to be due to 98Tc are more likely from 166Ho. The presence of 166Ho is most likely due to activation of the stable 165Ho in the meteorite from terrestrial background sources where it was stored.


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR Program Research Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.


Laser-Induced Breakdown Spectroscopy, Connor Drake Jun 2011

Laser-Induced Breakdown Spectroscopy, Connor Drake

Physics

The goal of this work is to use a Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) Laser, spectrometer, and computer to create a Laser Induced Breakdown Spectroscopy (LIBS) system. LIBS utilizes a focused, high-powered, pulsed laser whose peak electric field ionizes materials at the beam focal point, creating localized plasma. The plasma state includes broken molecular bonds, atom/electron-ionization, and excited electrons, which on the macroscopic level is a loud “snap” and a bright spark. In this project, a fiber optic cable is used to capture light emitted from the spark, and direct it into a spectrometer which tallies the number of photons …