Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

M + Ng Potential Energy Curves Including Spin-Orbit Coupling For M = K, Rb, Cs And Ng = He, Ne, Ar, Larry Aaron Blank, David E. Weeks, Gary S. Kedziora Mar 2012

M + Ng Potential Energy Curves Including Spin-Orbit Coupling For M = K, Rb, Cs And Ng = He, Ne, Ar, Larry Aaron Blank, David E. Weeks, Gary S. Kedziora

Faculty Publications

X2Σ+1/2 ⁠, A2Π1/2, A2Π3/2, and B2Σ+1/2 potential energy curves and associated dipole matrix elements are computed for M + Ng at the spin-orbit multi-reference configuration interaction level, where M = K, Rb, Cs and Ng = He, Ne, Ar. Dissociation energies and equilibrium positions for all minima are identified and corresponding vibrational energy levels are computed. Difference potentials are used together with the quasistatic approximation to estimate the position of satellite peaks of collisionally broadened D2 lines. The comparison of potential energy curves for …


Spatial And Spectral Performance Of A Chromotomosynthetic Hyperspectral Imaging System, Randall L. Bostick, Glen P. Perram Mar 2012

Spatial And Spectral Performance Of A Chromotomosynthetic Hyperspectral Imaging System, Randall L. Bostick, Glen P. Perram

Faculty Publications

The spatial and spectral resolutions achievable by a prototype rotating prism chromotomosynthetic imaging (CTI) system operating in the visible spectrum are described. The instrument creates hyperspectral imagery by collecting a set of 2D images with each spectrally projected at a different rotation angle of the prism. Mathematical reconstruction techniques that have been well tested in the field of medical physics are used to reconstruct the data to produce the 3D hyperspectral image. The instrument operates with a 100 mm focusing lens in the spectral range of 400–900 nm with a field of view of 71.6 mrad and angular resolution of …


Remote Sensing Phase Fluorimetry Using Mercury Vapor Lamp, Matthew J. Bohn, Michael A. Lundin Mar 2012

Remote Sensing Phase Fluorimetry Using Mercury Vapor Lamp, Matthew J. Bohn, Michael A. Lundin

AFIT Patents

An efficient and portable method for remote detection of a target mineral material through frequency domain fluorimetry, a detection technique that measures the time lag between absorption and emission of photons, thereby determining the lifetime of said target mineral material. As claimed and disclosed in the present invention, mercury vapor lamps, a common source of industrial facility lighting, emit radiation that overlaps the UV/blue absorption spectrum of many fluorophores and may be used as an efficient and portable excitation source for remote frequency domain fluorimetry.