Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 140

Full-Text Articles in Physics

Lithium Tetraborate As A Neutron Scintillation Detector: A Review, Elena Echeverria, John W. Mcclory, Lauren Samson, Katherine Shene, Juan A. Colon Santana, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, Lu Wang, Wai-Ning Mei, Kyle A. Nelson, Douglas S. Mcgregor, Peter A. Dowben, Carolina C. Ilie, James C. Petrosky, Archit Dhingra Dec 2023

Lithium Tetraborate As A Neutron Scintillation Detector: A Review, Elena Echeverria, John W. Mcclory, Lauren Samson, Katherine Shene, Juan A. Colon Santana, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, Lu Wang, Wai-Ning Mei, Kyle A. Nelson, Douglas S. Mcgregor, Peter A. Dowben, Carolina C. Ilie, James C. Petrosky, Archit Dhingra

Faculty Publications

The electronic structure and translucent nature of lithium tetraborate (Li2B4O7) render it promising as a scintillator medium for neutron detection applications. The inherently large neutron capture cross-section due to 10B and 6Li isotopes and the ease with which Li2B4O7 can be enriched with these isotopes, combined with the facile inclusion of rare earth dopants (occupying the Li+ sites), are expected to improve the luminescent properties, as well as the neutron detection efficiency, of Li2B4O7. The electronic structure of both doped …


Anomaly Detection In The Molecular Structure Of Gallium Arsenide Using Convolutional Neural Networks, Timothy Roche *, Aihua W. Wood, Philip Cho *, Chancellor Johnstone Aug 2023

Anomaly Detection In The Molecular Structure Of Gallium Arsenide Using Convolutional Neural Networks, Timothy Roche *, Aihua W. Wood, Philip Cho *, Chancellor Johnstone

Faculty Publications

This paper concerns the development of a machine learning tool to detect anomalies in the molecular structure of Gallium Arsenide. We employ a combination of a CNN and a PCA reconstruction to create the model, using real images taken with an electron microscope in training and testing. The methodology developed allows for the creation of a defect detection model, without any labeled images of defects being required for training. The model performed well on all tests under the established assumptions, allowing for reliable anomaly detection. To the best of our knowledge, such methods are not currently available in the open …


Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton Jun 2023

Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

Cadmium germanium diphosphide (CdGeP2) crystals, with versatile terahertz-generating properties, belong to the chalcopyrite family of nonlinear optical materials. Other widely investigated members of this family are ZnGeP2 and CdSiP2. The room-temperature absorption edge of CdGeP2 is near 1.72 eV (720 nm). Cadmium vacancies, phosphorous vacancies, and germanium-on-cadmium antisites are present in as-grown CdGeP2 crystals. These unintentional intrinsic point defects are best studied below room temperature with electron paramagnetic resonance (EPR) and optical absorption. Prior to exposure to light, the defects are in charge states that have no unpaired spins. Illuminating a CdGeP2 …


Measurement Of Proton Light Yield Of Water-Based Liquid Scintillator, E. J. Callaghan, B. L. Goldblum, J. A. Brown, T. A. Laplace, Juan J. Manfredi, M. Yeh, G. D. Orebi Gann Feb 2023

Measurement Of Proton Light Yield Of Water-Based Liquid Scintillator, E. J. Callaghan, B. L. Goldblum, J. A. Brown, T. A. Laplace, Juan J. Manfredi, M. Yeh, G. D. Orebi Gann

Faculty Publications

The proton light yield of liquid scintillators is an important property in the context of their use in large-scale neutrino experiments, with direct implications for neutrino-proton scattering measurements and the discrimination of fast neutrons from inverse β-decay coincidence signals. This work presents the first measurement of the proton light yield of a water-based liquid scintillator (WbLS) formulated from 5% linear alkyl benzene (LAB), at energies below 20 MeV, as well as a measurement of the proton light yield of a pure LAB + 2 g/L 2,5-diphenyloxazole (PPO) mixture (LABPPO). The measurements were performed using a double time-of-flight method and a …


Enabling Rapid Chemical Analysis Of Plutonium Alloys Via Machine Learning-Enhanced Atomic Spectroscopy Techniques, Ashwin P. Rao Sep 2022

Enabling Rapid Chemical Analysis Of Plutonium Alloys Via Machine Learning-Enhanced Atomic Spectroscopy Techniques, Ashwin P. Rao

Theses and Dissertations

Analytical atomic spectroscopy methods have the potential to provide solutions for rapid, high fidelity chemical analysis of plutonium alloys. Implementing these methods with advanced analytical techniques can help reduce the chemical analysis time needed for plutonium pit production, directly enabling the 80 pit-per-year by 2030 manufacturing goal outlined in the 2018 Nuclear Posture Review. Two commercial, handheld elemental analyzers were validated for potential in situ analysis of Pu. A handheld XRF device was able to detect gallium in a Pu surrogate matrix with a detection limit of 0.002 wt% and a mean error of 8%. A handheld LIBS device was …


Feasibility Of Obtaining Surface Layer Moisture Flux Using An Ir Thermometer, Steven T. Fiorino, Lance Todorowski, Jaclyn Schmidt, Yogendra Raut, Jacob Margraf May 2022

Feasibility Of Obtaining Surface Layer Moisture Flux Using An Ir Thermometer, Steven T. Fiorino, Lance Todorowski, Jaclyn Schmidt, Yogendra Raut, Jacob Margraf

Faculty Publications

This paper evaluates the feasibility of a method using a single hand-held infrared (IR) thermometer and a mini tower of wet and dry paper towels to psychometrically obtain surface layer temperature and moisture gradients and fluxes. Sling Psychrometers have long been standard measuring devices for quantifying the thermodynamics of near-surface atmospheric gas–vapor mixtures, specifically moisture parameters. However, these devices are generally only used to measure temperature and humidity at one near-surface level. Multiple self-aspirating psychrometers can be used in a vertical configuration to measure temperature and moisture gradients and fluxes in the first 1–2 m of the surface layer. This …


Characterization Of Environmental Conditioning Of Lithium Hydride Using Spectroscopy And Machine Learning, Ryan E. Pinson Mar 2022

Characterization Of Environmental Conditioning Of Lithium Hydride Using Spectroscopy And Machine Learning, Ryan E. Pinson

Theses and Dissertations

Lithium compounds such as lithium hydride (LiH) and anhydrous lithium hydroxide (LiOH) have various applications in industry but are highly reactive when exposed to moisture and CO2. These reactions create new molecular forms, including compounds such as lithium oxide (Li2O), lithium hydroxide monohydrate (LiOH ·H2O), and lithium carbonate (Li2CO3). These new compounds degrade the effectiveness in applications using these compounds. The negative effects induced by new lithium compounds creates a need for the ability to characterize the in-growth of such compounds. To study these in-growths, this work will present environmental …


Cu2+ And Cu3+ Acceptors In Β-Ga2O3 Crystals: A Magnetic Resonance And Optical Absorption Study, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, Christopher A. Lenyk, J. Jesenovec, J. S. Mccloy, M. D. Mccluskey, Larry E. Halliburton Feb 2022

Cu2+ And Cu3+ Acceptors In Β-Ga2O3 Crystals: A Magnetic Resonance And Optical Absorption Study, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, Christopher A. Lenyk, J. Jesenovec, J. S. Mccloy, M. D. Mccluskey, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) and optical absorption are used to characterize Cu2+ (3d9) and Cu3+ (3d8) ions in Cu-doped β-Ga2O3. These Cu ions are singly ionized acceptors and neutral acceptors, respectively (in semiconductor notation, they are Cu and Cu0 acceptors). Two distinct Cu2+ EPR spectra are observed in the as-grown crystals. We refer to them as Cu2+(A) and Cu2+(B). Spin-Hamiltonian parameters (a g matrix and a 63,65Cu hyperfine matrix) are obtained from the angular dependence of each spectrum. Additional electron-nuclear double resonance …


Development Of Advanced Machine Learning Models For Analysis Of Plutonium Surrogate Optical Emission Spectra, Ashwin P. Rao, Phillip R. Jenkins, John D. Auxier Ii, Michael B. Shattan, Anil Patnaik Jan 2022

Development Of Advanced Machine Learning Models For Analysis Of Plutonium Surrogate Optical Emission Spectra, Ashwin P. Rao, Phillip R. Jenkins, John D. Auxier Ii, Michael B. Shattan, Anil Patnaik

Faculty Publications

This work investigates and applies machine learning paradigms seldom seen in analytical spectroscopy for quantification of gallium in cerium matrices via processing of laser-plasma spectra. Ensemble regressions, support vector machine regressions, Gaussian kernel regressions, and artificial neural network techniques are trained and tested on cerium-gallium pellet spectra. A thorough hyperparameter optimization experiment is conducted initially to determine the best design features for each model. The optimized models are evaluated for sensitivity and precision using the limit of detection (LoD) and root mean-squared error of prediction (RMSEP) metrics, respectively. Gaussian kernel regression yields the superlative predictive model with an RMSEP of …


Development Of A Magnetic Confinement Attachment For Enhanced Signal In Handheld Laser Induced Breakdown Spectroscopy Soil Analysis, Alfred C. Anderson Dec 2021

Development Of A Magnetic Confinement Attachment For Enhanced Signal In Handheld Laser Induced Breakdown Spectroscopy Soil Analysis, Alfred C. Anderson

Theses and Dissertations

Field techniques for characterizing low levels of heavy elements of less than 100 parts per million in soils tend to be unreliable because of the relatively weak signal of these elements and the large, variable background inherent to analyzing soils with minimal sample preparation. To enhance the detection and analysis capability of a handheld laser-induced breakdown spectroscopy (LIBS) instrument, this work investigates the effects of a unique magnetic confinement apparatus on signal intensities, focusing on five iron lines as well as those from actinides in 11 soil samples. The proposed magnetic confinement apparatus achieved over 0.8 T but did not …


Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton Nov 2021

Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton

Faculty Publications

Barium gallium selenide (BaGa4Se7) is a recently developed nonlinear optical material with a transmission window extending from 470 nm to 17 μm. A primary application of these crystals is the production of tunable mid-infrared laser beams via optical parametric oscillation. Unintentional point defects, such as selenium vacancies, cation vacancies (barium and/or gallium), and trace amounts of transition-metal ions, are present in BaGa4Se7 crystals and may adversely affect device performance. Electron paramagnetic resonance (EPR) and optical absorption are used to identify and characterize these defects. Five distinct EPR spectra, each representing an electron …


Beam Formation And Vernier Steering Off Of A Rough Surface, Eric K. Nagamine, Kenneth W. Burgi, Samuel D. Butler Aug 2021

Beam Formation And Vernier Steering Off Of A Rough Surface, Eric K. Nagamine, Kenneth W. Burgi, Samuel D. Butler

Faculty Publications

Wavefront shaping can refocus light after it reflects from an optically rough surface. One proposed use case of this effect is in indirect imaging; if any rough surface could be turned into an illumination source, objects out of the direct line of sight could be illuminated. In this paper, we demonstrate the superior performance of a genetic algorithm compared to other iterative feedback-based wavefront shaping algorithms in achieving reflective inverse diffusion for a focal plane system. Next, the ability to control the pointing direction of the refocused beam with high precision over a narrow angular range is demonstrated, though the …


Correlated Positron-Electron Orbital (Cpeo): A Novel Method That Models Positron-Electron Correlation In Virtual Ps At The Mean-Field Level, Kevin E. Blaine Jun 2021

Correlated Positron-Electron Orbital (Cpeo): A Novel Method That Models Positron-Electron Correlation In Virtual Ps At The Mean-Field Level, Kevin E. Blaine

Theses and Dissertations

The Correlated Positronic-Electronic Orbital (CPEO) method was developed and implemented to capture correlation effects at between the positron and electron in the modeling of systems that involve a bound positron. Methods that effectively model these systems require many hundred basis functions and use a mean field approach as the beginning step. CPEO builds an orbital for virtual Positronium (Ps) that contains a positron in a bound state along with an accompanying electron to the larger system. Assigning the virtual Ps orbital allows for the two particle variational optimization in conjunction with the other particles that compose the whole system. This …


Single-Shot Positron Annihilation Lifetime Spectroscopy Using A Liquid Scintillator, Joshua R. Machacek, Shawn Mctaggart, Larry W. Burggraf May 2021

Single-Shot Positron Annihilation Lifetime Spectroscopy Using A Liquid Scintillator, Joshua R. Machacek, Shawn Mctaggart, Larry W. Burggraf

Faculty Publications

Liquid scintillators provide a fast, single component response. However, they traditionally have a low flashpoint and high vapor pressure. We demonstrate the use of an EJ-309 scintillator (high flashpoint and low vapor pressure variant) to acquire single-shot positron annihilation lifetime spectroscopy spectra using a trap-based positron beam.


Error Reduction For The Determination Of Transverse Moduli Of Single-Strand Carbon Fibers Via Atomic Force Microscopy, Joshua D. Frey Mar 2021

Error Reduction For The Determination Of Transverse Moduli Of Single-Strand Carbon Fibers Via Atomic Force Microscopy, Joshua D. Frey

Theses and Dissertations

The transverse modulus of single strand carbon fibers is measured using PeakForce Atomic Force Microscopy - Quantitative Nanomechanical Measurement to less than 5 percent error for 11 types of carbon fiber with longitudinal moduli between 924-231 GPA, including export-controlled fibers. Statistical methods are employed to improve the quality of data to exclude outliers within an measurement and within the sample set. A positive linear correlation between the longitudinal and transverse modulus with an R2=0.76 is found. Pitch-based fibers exhibit lower measurement error than PAN-based fibers, while PAN fibers exhibited no apparent modulus correlation when the Pitch fibers are …


Lithium Compound Characterization Via Laser Induced Breakdown Spectroscopy And Raman Spectroscopy, James T. Stofel Mar 2021

Lithium Compound Characterization Via Laser Induced Breakdown Spectroscopy And Raman Spectroscopy, James T. Stofel

Theses and Dissertations

Industries such as lithium-ion battery producers and the nuclear industry community seek to produce and store lithium in pure chemical forms. However, these lithium compounds are reactive with the atmosphere and quickly degrade into less desirable forms. Therefore, industry desires a fast and effective quality control approach to quantify the ingrowth of these secondary lithium chemical forms. This research presents a novel approach using Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy in tandem to enhance lithium compound characterization beyond what is achieved by either technique alone. The resulting spectral data are aggregated using data fusion and analyzed using chemometrics for …


Computational Electromagnetic Modeling Of Metasurface Optical Devices With Defect Study, Carlos D. Diaz Mar 2021

Computational Electromagnetic Modeling Of Metasurface Optical Devices With Defect Study, Carlos D. Diaz

Theses and Dissertations

One of the first fabricated metasurface optical devices, the in-plane V-antenna lenses, were plagued by a fundamental transmission limit (<25 >). Two distinct sets of Out-of-Plane phase elements were designed with improved transmission (~60 ). These were fabricated as beamsteerers and characterized in terms of their Bidirectional Transmittance Distribution Function measured as a function of scatter angle. Experimental data from the beamsteerers was analyzed via simulations using a finite element method (FEM). The measurements showed the designed beamsteering, but also a strong zero-order diffraction not present in the simulations, which motivated this study to understand what was causing these differences. …


Ab Initio Spectroscopy Of Natural And Artificial Fire Contaminants For V/W Band Frequency Signal Absorbance, Matthew B. Husk Mar 2021

Ab Initio Spectroscopy Of Natural And Artificial Fire Contaminants For V/W Band Frequency Signal Absorbance, Matthew B. Husk

Theses and Dissertations

The rotation and vibration spectral properties including frequencies and intensities for highly concentrated molecules present in wildland and artificial fires have been studied. These properties were used to determine absorption and its effect in a link budget analysis. Absorption in link budget analyses is commonly accounted for via line-by-line methodology aided by HITRAN documented intensities. Limited, if any, customization of spectral properties is available with HITRAN and other spectral databases. Ab initio calculations with different atomic basis sets were employed to obtain structures, dipole moments, rotational-vibrational frequencies and intensities, as well as various coupling parameters. Anharmonic corrections to the vibrational …


Data Driven Investigation Into The Off-Axis Brdf To Develop An Algorithm To Classify Anisotropicity, Anne W. Werkley Mar 2021

Data Driven Investigation Into The Off-Axis Brdf To Develop An Algorithm To Classify Anisotropicity, Anne W. Werkley

Theses and Dissertations

The Bi-directional Reflectance Distribution Function (BRDF) is used to describe reflectances of materials by calculating the ratio of the reflected radiance to the incident irradiance. While it was found that isotropic BRDF microfacet models maintained symmetry about ɸs = π, such symmetry was not maintained about the θs = θi axis, except for close to the specular peak. This led to development of a novel data-driven metric for how isotropic a BRDF measurement is. Research efforts centered around developing an algorithm that could determine material anisotropy without having to fit to models. The algorithm developed here successfully …


Photoinduced Trapping Of Charge At Sulfur Vacancies And Copper Ions In Photorefractive Sn2P2S6 Crystals, Timothy D. Gustafson, Eric M. Golden, Elizabeth M. Scherrer, Nancy C. Giles, A. A. Grabar, Sergey A. Basun, Jonathan E. Slagle, Larry E. Halliburton Feb 2021

Photoinduced Trapping Of Charge At Sulfur Vacancies And Copper Ions In Photorefractive Sn2P2S6 Crystals, Timothy D. Gustafson, Eric M. Golden, Elizabeth M. Scherrer, Nancy C. Giles, A. A. Grabar, Sergey A. Basun, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

Electron paramagnetic resonance (EPR) is used to monitor photoinduced changes in the charge states of sulfur vacancies and Cu ions in tin hypothiodiphosphate. A Sn2P2S6 crystal containing Cu+ (3d10) ions at Sn2+ sites was grown by the chemical vapor transport method. Doubly ionized sulfur vacancies (V2+S) are also present in the as-grown crystal (where they serve as charge compensators for the Cu+ ions). For temperatures below 70 K, exposure to 532 or 633 nm laser light produces stable Cu2+ (3d9) ions, as electrons move from Cu+ ions to …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


A Fully Quantum Calculation Of Broadening And Shifting Coefficients Of The D1 And D2 Spectral Lines Of Alkali-Metal Atoms Colliding With Noble-Gas Atoms, Robert D. Loper, David E. Weeks Oct 2020

A Fully Quantum Calculation Of Broadening And Shifting Coefficients Of The D1 And D2 Spectral Lines Of Alkali-Metal Atoms Colliding With Noble-Gas Atoms, Robert D. Loper, David E. Weeks

Faculty Publications

We use the Baranger model to compute collisional broadening and shift rates for the D1 and D2 spectral lines of M + Ng, where M = K, Rb, Cs and Ng = He, Ne, Ar. Scattering matrix elements are calculated using the channel packet method, and non-adiabatic wavepacket dynamics are determined using the split-operator method together with a unitary transformation between adiabatic and diabatic representations. Scattering phase shift differences are weighted thermally and are integrated over temperatures ranging from 100 K to 800 K. We find that predicted broadening rates compare well with experiment, but shift rates are …


Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing Sep 2020

Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing

Theses and Dissertations

Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using …


Low-Information Radiation Imaging Using Rotating Scatter Mask Systems And Neural Network Algorithms, Robert J. Olesen Sep 2020

Low-Information Radiation Imaging Using Rotating Scatter Mask Systems And Neural Network Algorithms, Robert J. Olesen

Theses and Dissertations

While recent studies have demonstrated the directional capabilities of the single-detector rotating scatter mask (RSM) system for discrete, dual-particle environments, there has been little progress towards adapting it as a true imaging device. In this research, two algorithms were developed and tested using an RSM mask design previously optimized for directional detection and simulated 137Cs signals from a variety of source distributions. The first, maximum-likelihood expectation-maximization (ML-EM), was shown to generate noisy images, with relatively low accuracy (145% average relative error) and signal-to-noise ratio (0.27) for most source distributions simulated. The second, a novel regenerative neural network (ReGeNN), performed exceptionally …


Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan Jul 2020

Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan

Faculty Publications

A portable LIBS device was used for rapid elemental impurity analysis of plutonium alloys. This device demonstrates the potential for fast, accurate in-situ chemical analysis and could significantly reduce the fabrication time of plutonium alloys.


Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles Apr 2020

Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to experimentally determine the (0/−) level of the Mg acceptor in an Mg-doped β-Ga2O3 crystal. Our results place this level 0.65 eV (±0.05 eV) above the valence band, a position closer to the valence band than the predictions of several recent computational studies. The crystal used in this investigation was grown by the Czochralski method and contains large concentrations of Mg acceptors and Ir donors, as well as a small concentration of Fe ions and an even smaller concentration of Cr ions. Below room temperature, illumination with 325 nm laser light …


Near-Infrared-Sensitive Photorefractive Sn2P2S6 Crystals Grown By The Bridgman Method, O. M. Shumelyuk, A. Y. Volkov, Y. Skrypka, Larry E. Halliburton, Nancy C. Giles, Christopher A. Lenyk, Sergey A. Basun, A. A. Grabar, Y. M. Vysochansky, S. G. Odoulov, D. R. Evans Mar 2020

Near-Infrared-Sensitive Photorefractive Sn2P2S6 Crystals Grown By The Bridgman Method, O. M. Shumelyuk, A. Y. Volkov, Y. Skrypka, Larry E. Halliburton, Nancy C. Giles, Christopher A. Lenyk, Sergey A. Basun, A. A. Grabar, Y. M. Vysochansky, S. G. Odoulov, D. R. Evans

Faculty Publications

Ferroelectric tin hypothiodiphosphate (Sn2P2S6) crystals are well-known for their significant piezoelectric, electro-optic, and nonlinear optical properties. These crystals have usually been grown by a vapor transport technique. We report in this paper on the first study of photorefractive nonlinearity in Sn2P2S6 crystals grown by the Bridgman method. Pronounced photorefraction is observed in the near-infrared region of the spectrum even with no preliminary optical sensitizing.


Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman Mar 2020

Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman

Theses and Dissertations

A stack of thin Gd, Ti, and Cu foils were irradiated with an 18 MeV proton beam at Lawrence-Berkeley National Laboratory's 88-Inch Cyclotron to investigate the 160Gd(p,n)160Tb nuclear reaction for nuclear forensics applications. This experiment will improve knowledge of 160Tb production rates, allowing 160Tb to be efficiently created in a foil stack consisting of other proton induced isotopes for forensics applications. A set of 15 measured cross sections between 4-18 MeV for 160Gd(p,n)160Tb were obtained using a stacked foil technique. The foil stack consisted of one stainless steel, one iron, fifteen gadolinium, …


Rapid Analysis Of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy, Ashwin P. Rao Mar 2020

Rapid Analysis Of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy, Ashwin P. Rao

Theses and Dissertations

This work investigated the capability of a portable LIBS device to detect and quantify dopants in plutonium surrogate alloys, specifically gallium, which is a common stabilizer used in plutonium alloys. The SciAps Z500-ER was utilized to collect spectral data from cerium-gallium alloys of varying gallium concentrations. Calibration models were built to process spectra from the Ce-Ga alloys and calculate gallium concentration from spectral emission intensities. Univariate and multivariate analysis techniques were used to determine limits of detection of different emission line ratios. Spatial mapping measurements were conducted to determine the device's ability to detect variations in gallium concentration on the …


Comparison Of The Accuracy Of Rayleigh-Rice Polarization Factors To Improve Microfacet Brdf Models, Rachel L. Wolfgang Mar 2020

Comparison Of The Accuracy Of Rayleigh-Rice Polarization Factors To Improve Microfacet Brdf Models, Rachel L. Wolfgang

Theses and Dissertations

Microfacet BRDF models assume that a surface has many small microfacets making up the roughness of the surface. Despite their computational simplicity in applications in remote sensing and scene generation, microfacet models lack the physical accuracy of wave optics models. In a previous work, Butler proposed to replace the Fresnel reflectance term of microfacet models with the Rayleigh-Rice polarization factor, Q, to create a more accurate model. This work examines the novel model that combines microfacet and wave optics terms for its accuracy in the pp and ss polarized cases individually. The model is fitted to the polarized data in …