Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

2010

Discipline
Keyword
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Physics

Tunable Optical Delay In Doppler-Broadened Cesium Vapor, Monte D. Anderson Dec 2010

Tunable Optical Delay In Doppler-Broadened Cesium Vapor, Monte D. Anderson

Theses and Dissertations

Variable-delay tunable optical delay line or optical buffers are critical for the development of all-optical networks components as well as interferometry and analytic instruments. Recent research on slow light may hold the key for the development of the first practical tunable optical delay device. In this research the linear dispersion delay effects in an alkali vapor. The hyperfine relaxation observations present insight into the complex bleach wave dynamics during a high-intensity pulsed pump in DPAL systems.


Scattering Matrix Elements For The Nonadiabatic Collision B (2PJ) + H2 (1Σ+G, Ν, Ј) ↔ B (2PJ’) + H2 (1Σ+G, Ν’, J’)., Luke A. Barger Dec 2010

Scattering Matrix Elements For The Nonadiabatic Collision B (2PJₐ) + H2 (1Σ+G, Ν, Ј) ↔ B (2PJ’ₐ) + H2 (1Σ+G, Ν’, J’)., Luke A. Barger

Theses and Dissertations

Scattering matrix elements are calculated for the nonadiabatic inelastic collision B (2Pj) + H2 (1Σ+g, ν, ј) ↔ B (2Pj’) + H2 (1Σ+g, ν’, j’). This calculation utilizes the effective potential energy surfaces for this collision generated by Garvin along with a correction to the asymptotic H2 potential. Wavepackets are propagated on these surfaces using a split-operator propagator. This propagation yields correlation functions between reactant and product Møller states which are used to calculate the scattering …


Measurement And Modeling Of Infrared Nonlinear Absorption Coefficients And Laser-Induced Damage Thresholds In Ge And Gasb, Torrey J. Wagner, Matthew J. Bohn, Ronald A. Coutu Jr., L. P. Gonzales, J. M. Murray, K. L. Schepler, S. Guha Oct 2010

Measurement And Modeling Of Infrared Nonlinear Absorption Coefficients And Laser-Induced Damage Thresholds In Ge And Gasb, Torrey J. Wagner, Matthew J. Bohn, Ronald A. Coutu Jr., L. P. Gonzales, J. M. Murray, K. L. Schepler, S. Guha

Faculty Publications

Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 µm for the first time, to our knowledge. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5 µm and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for picosecond or nanosecond …


Laser Demonstration And Performance Characterization Of An Optically Pumped Alkali Laser System, Clifford V. Sulham Sep 2010

Laser Demonstration And Performance Characterization Of An Optically Pumped Alkali Laser System, Clifford V. Sulham

Theses and Dissertations

Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as …


Collisional Dynamics Of The Cesium D1 And D2 Transitions, Greg A. Pitz Sep 2010

Collisional Dynamics Of The Cesium D1 And D2 Transitions, Greg A. Pitz

Theses and Dissertations

The collisional dynamics of the 62P levels in cesium have been studied utilizing steady state laser absorption and laser induced florescence techniques. In addition the production of a blue beam produced by two photon absorption has been observed in potassium. The collisional broadening rate for cesium, λL, for He, Ne, Ar, Kr, Xe, N2, H2, HD, D2, CH4, C2H6, CF4, and 3He are 24.13, 10.85, 18.31, 17.82, 19.74, 16.64, 20.81, 20.06, 18.04, 29.00, 26.70, 18.84, and 26.00 MHz/torr, respectively for the …


All Solid-State Mid-Ir Laser Development, Nonlinear Absorption Investigation And Laser-Induced Damage Study, Torrey J. Wagner Sep 2010

All Solid-State Mid-Ir Laser Development, Nonlinear Absorption Investigation And Laser-Induced Damage Study, Torrey J. Wagner

Theses and Dissertations

In this research, nonlinear optical absorption coefficients and laser-induced damage thresholds are measured in Ge and GaSb, which are materials that are used in IR detectors. Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, two-photon and free-carrier absorption coefficients are measured in Ge and GaSb at 2.05 and 2.5 μm for the first time. At these wavelengths, nonlinear absorption is the primary damage mechanism, and damage thresholds at picosecond and nanosecond pulse widths were measured and agreed well with modeled thresholds using experimentally measured parameters. The damage threshold for a single-layer Al …


Electronic Structure Of Lithium Tetraborate, David J. Wooten Jun 2010

Electronic Structure Of Lithium Tetraborate, David J. Wooten

Theses and Dissertations

Due to interest as neutron detection material, an investigation of Li2B4O7(110) and Li2B4O7(100) was undertaken, utilizing photoemission and inverse photoemission spectroscopic techniques. The measured band gap depended on crystallographic direction with the band gaps ranging from 8.9±0.5 eV to 10.1±0.5 eV. The measurement yielded a density of states that qualitatively agreed with the theoretical results from model bulk band structure calculations for Li2B4O7; albeit with a larger band gap than predicted, but consistent with the known deficiencies of LDA and DFT calculations. …


The Combined Effects Of Radio Frequency And Gamma Irradiation On P-Channel Mosfets, Joshua D. Daniel Jun 2010

The Combined Effects Of Radio Frequency And Gamma Irradiation On P-Channel Mosfets, Joshua D. Daniel

Theses and Dissertations

The purpose of this research was to investigate the combined effects of continuous gigahertz radio frequency signals and gamma irradiation on the threshold voltage of metal oxide semiconductor field effect transistors. The combined effects of gigahertz radio frequency waves and gamma irradiation on electronics presents a new challenge in electronic warfare and little is known of the combined effect on threshold voltage damage and recovery. The Fairchild NDS352AP, a commonly used commercial device, was irradiated by a cobalt-60 source under a +5 V bias with and without a radio frequency signal applied to the gate. The threshold voltage was measured …


Hard Collisions In Rubidium Using Sub-Doppler Spectroscopy, Douglas E. Thornton Mar 2010

Hard Collisions In Rubidium Using Sub-Doppler Spectroscopy, Douglas E. Thornton

Theses and Dissertations

To better understand the laser kinetics of an alkali gain medium, hard collisions, or velocity-changing collisions, has been studied and a velocity-changing collisional rate has been calculated. Previous works have studied these collisions, but no rate has been calculated. Using the precise tool of sub-Doppler spectroscopy, atomic hard collisions can be observed. The collected spectra are fitted with two different line shapes to demonstrate the accuracy of this method. From the fits, the number of hard collisions can be extracted. The time scale of the hard collisions in rubidium is interpolated by varying the chopping frequency of the pump beam, …


Monocular Passive Ranging By An Optical System With Band Pass Filtering, Joel R. Anderson Mar 2010

Monocular Passive Ranging By An Optical System With Band Pass Filtering, Joel R. Anderson

Theses and Dissertations

An instrument for monocular passive ranging based on atmospheric oxygen absorption near 762 nm has been designed, built and deployed to track emissive targets, including the plumes from jet engines or rockets. An intensified CCD array is coupled to variable band pass liquid crystal display filter and 3.5 – 8.8 degree field of view optics to observe the target. By recording sequential images at 7 Hz in three 6 nm width bands, the transmittance of the R-branch of the O2 (X-b) (0,0) band is determined. A metric curve for determining range from transmittance is developed using the HITRAN spectral …


The Material Properties Of Cssnbr3 And Csbr:Sn-1% And Their Potential As Scintillator Detector Material, Neal B. Kleinschmidt Mar 2010

The Material Properties Of Cssnbr3 And Csbr:Sn-1% And Their Potential As Scintillator Detector Material, Neal B. Kleinschmidt

Theses and Dissertations

The search for superior nuclear radiation detection materials is ongoing. Current scintillator materials using Thallium doped Sodium Iodide or Cesium Iodide are the benchmarks for ease of use and quick identification of isotope species. This research aims to explore Cesium Bromide doped with 1% molar tin (CsBr:Sn-1%) and Cesium Tin Bromide (CsSnBr3) as candidate materials for a new scintillator. The techniques of Extended X-Ray Absorption Fine Structure (EXAFS), X-Ray Absorption Near Edge Structure (XANES) and Cathodoluminescence are used to determine the suit- ability of CsSnBr3 and CsBr:Sn-1% with Sn4+ as a potential scintillator materials and explore their …


Time Dependent Channel Packet Calculation Of Two Nucleon Scattering Matrix Elements, Brian S. Davis Mar 2010

Time Dependent Channel Packet Calculation Of Two Nucleon Scattering Matrix Elements, Brian S. Davis

Theses and Dissertations

A new approach to calculating nucleon-nucleon scattering matrix elements using a proven atomic time-dependent wave packet technique is investigated. Wave packets containing centripetal barrier information are prepared in close proximity to nuclear well. This is accomplished by first using an analytic equation to determine the wave packets in a suitable intermediate asymptotic state where the centripetal barrier is negligible. Then, the split operator technique is used to propagate the wave packets back to their original positions under the full Hamiltonian. Here, one wave packet is held stationary while the other is allowed to evolve and explore the nuclear well. Scattering …


Scene Change Artifacts In Fourier Transform Spectroscopy Of Temporally Changing Sources, Anthony M. Young Mar 2010

Scene Change Artifacts In Fourier Transform Spectroscopy Of Temporally Changing Sources, Anthony M. Young

Theses and Dissertations

Improved understanding of midwave infrared (1-5 micron) spectral emissions from detonation fireballs is needed to develop phenomenological models for battle space optical forensics. The ability to measure radiance over a wide band pass at arbitrary resolutions make Fourier-transform spectrometers (FTS) an attractive tool. However, interferometer based spectroscopic measurements can be corrupted when the observed intensity changes during data acquisition. While small, random fluctuations in scene intensity translate into noise, systematic variations introduce scene-change artifacts (SCAs) into Fourier-transformed spectrum.


Nuclear Forensics: Measurements Of Uranium Oxides Using Time-Of-Flight Secondary Ion Mass Spectrometry (Tof-Sims), Wesley A. Schuler Mar 2010

Nuclear Forensics: Measurements Of Uranium Oxides Using Time-Of-Flight Secondary Ion Mass Spectrometry (Tof-Sims), Wesley A. Schuler

Theses and Dissertations

Over the past decade, law enforcement, governmental and public agencies have been stymied by the threat of the trafficking of nuclear materials. During this time span, reports from the International Atomic Energy Agency of illicit trafficking have increased eightfold from 20 to 160. For this reason, nuclear forensics is a burgeoning science focused on the identification of seized special nuclear materials. Identification of these materials is based upon the wealth of information that can be obtained by applying multiple analytical and measurement technologies. All of the information gained from each sample can then be used to further characterize other samples …


Mission Analysis And Design For Space Based Inter-Satellite Laser Power Beaming, Nicholas M. Keller Mar 2010

Mission Analysis And Design For Space Based Inter-Satellite Laser Power Beaming, Nicholas M. Keller

Theses and Dissertations

This research effort develops an interdisciplinary design tool to optimize an orbit for the purpose of wirelessly beaming power from the International Space Stations (ISS) Japanese Experimental Module Exposed Facility (JEM/EF) to a target satellite. For the purpose of this initiative, the target satellite will be referred to as FalconSAT6, a reference to the proposed follow-on satellite to the U.S. Air Force Academy’s (USAFA) FalconSAT5 program. The USAFA FalconSAT program provides cadets an opportunity to design, analyze, build, test and operate small satellites to conduct Department of Defense (DoD) space missions. The tool developed for this research is designed to …


Three Dimensional Positron Annihilation Momentum Measurement Technique (3dpamm) Applied To Measure Oxygen-Atom Defects In 6h Silicon Carbide, Christopher S. Williams Mar 2010

Three Dimensional Positron Annihilation Momentum Measurement Technique (3dpamm) Applied To Measure Oxygen-Atom Defects In 6h Silicon Carbide, Christopher S. Williams

Theses and Dissertations

A three-dimensional Positron Annihilation Spectroscopy System (3DPASS) capable to simultaneously measure three-dimensional electron-positron (e--e+) momentum densities measuring photons derived from e--e+ annihilation events was designed and characterized. 3DPASS simultaneously collects a single data set of correlated energies and positions for two coincident annihilation photons using solid-state double-sided strip detectors (DSSD). Positions of photons were determined using an interpolation method which measures a figure-of-merit proportional to the areas of transient charges induced on both charge collection strips directly adjacent to the charge collection strips interacting with the annihilation photons. The subpixel resolution was measured for both double-sided strip detectors (DSSD) and …


Numerical Investigation Of Statistical Turbulence Effects On Beam Propagation Through 2-D Shear Mixing Layer, James C. Bowers Mar 2010

Numerical Investigation Of Statistical Turbulence Effects On Beam Propagation Through 2-D Shear Mixing Layer, James C. Bowers

Theses and Dissertations

A methodology is developed for determining the validity of making a statistical turbulent approach using Kolmogorov theory to an aero-optical turbulent ow. Kolmogorov theory provides a stochastic method that has a greatly simplified and robust method for calculating atmospheric turbulence effects on optical beam propagation, which could simplify similar approaches to chaotic aero-optical flows. A 2-D laminar Navier-Stokes CFD Solver (AVUS) is run over a splitter plate type geometry to create an aero-optical like shear mixing layer turbulence field. A Matlab algorithm is developed to import the flow data and calculates the structure functions, structure constant, and Fried Parameter ( …


Simulation Of A Diode Pumped Alkali Laser, A Three Level Numerical Approach, Shawn W. Hackett Mar 2010

Simulation Of A Diode Pumped Alkali Laser, A Three Level Numerical Approach, Shawn W. Hackett

Theses and Dissertations

This paper develops a three level model for a continuous wave diode pumped alkali laser by creating rate equations based on a three level system. The three level system consists of an alkali metal vapor, typically Rb or Cs, pumped by a diode from the 2S1/2 state to the 2P3/2 , a collisional relaxation from 2P3/2 to 2P1/ 2 , and then lasing from 2P1/2 to 2S1/2 . The hyperfine absorption and emission cross sections for these transitions are developed in detail. Differential equations for intra-gain pump attenuation …


Passive Ranging Using Infra-Red Atmospheric Attenuation, Douglas J. Macdonald Mar 2010

Passive Ranging Using Infra-Red Atmospheric Attenuation, Douglas J. Macdonald

Theses and Dissertations

Methods of estimating range to an emissive target based on the depth of an atmospheric absorption band are demonstrated. The present work uses measurements of the CO2 absorption band centered at 2.0 µm where signal-to-background ratios are maximum for many applications. Model results, based on high-resolution transmission molecular absorption (HITRAN) database cross sections, are used to predict range accuracy at ranges of up to 50 km and are compared with short range (<5km) experimental results. The spectra of 23 high explosive events were used to validate the model. Using the assumption of a blackbody spectrum, extracted ranges consistently underestimated the true range by approximately 13%. By incorporating the stoichiometry of the fireball from previous research and using particulate contribution as a parameter, the error for the range estimates could be reduced to 3%.


Rubidium Recycling In A High Intensity Short Duration Pulsed Alkali Laser, Wooddy S. Miller Mar 2010

Rubidium Recycling In A High Intensity Short Duration Pulsed Alkali Laser, Wooddy S. Miller

Theses and Dissertations

Laser induced fluorescence was used to study how pump pulse duration and alkali recycle time effects maximum power output in a Diode Pumped Alkali Laser (DPAL) system. A high intensity short pulsed pump source was used to excited rubidium atoms inside a DPAL-type laser. The maximum output power of the laser showed a strong dependence upon the temporal width of the pump pulse in addition to the input pump intensity. A linear relationship was observed between the maximum output power and the pulse width due to the effective lifetime of the excited state, defined as the time it takes for …


Afm-Patterned 2-D Thin-Film Photonic Crystal Analyzed By Complete Angle Scatter, Nicholas C. Herr Mar 2010

Afm-Patterned 2-D Thin-Film Photonic Crystal Analyzed By Complete Angle Scatter, Nicholas C. Herr

Theses and Dissertations

The purpose of this research was to use an atomic force microscope (AFM) to generate a 2-D square array of sub-wavelength surface features from a single material over a region large enough to permit optical characterization. This work is an extension of previous AFIT nano-patterning work and is in response to the small subunit sizes demanded for the production of optical metamaterials and photonic crystals. A diamond nano-indentation AFM probe was used to produce a 325-μm by 200-μm array of indentations in a 120-nm thick polystyrene film deposited on silicon. Indentation spacing of 400 nm produced well-defined surface features with …


Thermal Neutron Point Source Imaging Using A Rotating Modulation Collimator (Rmc), Nathan O. Boyce Mar 2010

Thermal Neutron Point Source Imaging Using A Rotating Modulation Collimator (Rmc), Nathan O. Boyce

Theses and Dissertations

This thesis demonstrates a previously untested capability of the Rotating Modulation Collimator (RMC) to image a point-like neutron source. The encouraging results, achieved using low-energy neutrons, provide motivation for further refinement and continued research with higher-energy neutrons. The detector and the masks on an existing RMC imaging system were exchanged to function with neutrons. The source in this research produced a poly-energetic spectrum of neutrons through the reaction. The source of alpha particles was a 72.7 mCi 239Pu source. The RMC detector was located 250 cm from the bare source and operated for three hours to generate a modulation …


In-Situ, Gate Bias Dependent Study Of Neutron Irradiation Effects On Algan/Gan Hfets, Janusz K. Mikina Mar 2010

In-Situ, Gate Bias Dependent Study Of Neutron Irradiation Effects On Algan/Gan Hfets, Janusz K. Mikina

Theses and Dissertations

AlGaN/GaN Heterostructure Field Effect Transistors (HFETs) have come under increased study in recent years due to their highly desirable material and electrical properties and survivability even during and after exposure to extreme temperature and radiation environments. In this study, unpassivated and SiN passivated Al0.27Ga0.73N/GaN HFETs were subjected to neutron radiation at 120 K. The primary focus of the research was the effects of neutron irradiation on drain current, gate leakage current, threshold voltage shift, gate-channel capacitance, and the effects of biasing the gate during irradiation. In-situ measurements were conducted on transistor current, gate-channel capacitance, and gate …


Improving Low Order, Linear, Positive Spatial Quadratures For The Partial Current Neutron Transport Method, John M. Snyder Mar 2010

Improving Low Order, Linear, Positive Spatial Quadratures For The Partial Current Neutron Transport Method, John M. Snyder

Theses and Dissertations

AFIT researchers have developed a new approach to solving Discrete Ordinates equations, which approximate the linear Boltzmann Transport Equation (BTE). The usual approach is von Neumann iteration on the scattering source, which requires repeated sweeps through the spatial-angular grid. Acceptable convergence requires complicated and expensive acceleration schemes. The new approach, Partial-Current Transport (PCT) with Adaptive Distribution Iteration, eliminates scattering source iteration through matrix inversions and a reduced-size global linear algebra problem. It creates the needed matrices directly from the standard spatial quadratures used in the sweeping. Positivity, linearity, and (higher-than-first-order) accuracy are the key desirable qualities with all Discrete Ordinates …


Positron Annihilation Ratio Spectroscopy (Psars) Applied To Positronium Formation Studies, Robert C. Slaughter Mar 2010

Positron Annihilation Ratio Spectroscopy (Psars) Applied To Positronium Formation Studies, Robert C. Slaughter

Theses and Dissertations

A Positron Annihilation of Radiation Spectrometer (PsARS) was developed and characterized. PsARS spectroscopy as well as digital Positron Annihilation Lifetime Spectroscopy (PALS) was applied to measure positronium formation on gold nanoparticles deposited through an evaporative method onto a thin capillary tube. This gold coated capillary tube was designed to be used for positronium lifetime studies in local electric field experiments. High local electric fields can polarize a positron-electron pair, which may result in an extended lifetime of the positron. These fields may be created through the interaction of an external electric field with silver nanoparticles deposited onto the surface of …


Optical And Electrical Characterization Of Bulk Grown Indium-Gallium-Arsenide Alloys, Austin C. Bergstrom Mar 2010

Optical And Electrical Characterization Of Bulk Grown Indium-Gallium-Arsenide Alloys, Austin C. Bergstrom

Theses and Dissertations

Advances in crystal growth techniques have allowed increased quality in growth of bulk ternary InxGa1-xAs. Here, the optical and electrical properties of samples grown through the vertical Bridgman (or multi-component zone melting growth) method have been investigated through photoluminescence spectroscopy and Hall effect measurements. Indium mole fractions varied from 0.75 for 1. Hall effect measurements at temperatures ranging from 10 to 300 K revealed moderate n-type doping with carrier concentrations ranging from 1.5 to 9.6×1016 cm-3 at 10 to 15 K. Carriers from deep donor levels became appreciable between 50 and 100 K. Hall …


Uncertainty Quantification Of Multi-Component Isotope-Separation Cascade Model, Khoi D. Tran Mar 2010

Uncertainty Quantification Of Multi-Component Isotope-Separation Cascade Model, Khoi D. Tran

Theses and Dissertations

Monte Carlo uncertainty quantification (UQ) capability has been added to a code for modeling multi-component steady-state isotope-separation enrichment cascades to characterize the propagation of uncertainties in input data that define the cascade and the feed. Random samples of error for every computational input are drawn from its individual uncertainty distribution and added to the inputs, creating a set of enrichment cascade problems with perturbed inputs. The set of problems is solved using the verified code. The cascade outputs are then characterized using the empirical cumulative distribution. The uncertainty output data are analyzed to gain new insights into the behaviors of …


Digital Delay Device, Guna Seetharaman, Paul E. Kladitis Mar 2010

Digital Delay Device, Guna Seetharaman, Paul E. Kladitis

AFIT Patents

A digitally controlled optical delay apparatus providing optical signal delays electrically selectable in the picosecond to nanosecond range by way of selectable signal path lengths. Path lengths are incremented in physical length and path delay time according to digital ratios. The delay element includes micro-miniature path changing mirrors controlled in path length selecting positioning by input signals of logic level magnitude. Fiber optic coupling of signals to and from the delay element and a combination of fixed position and movable mirror included optical signal path lengths are included.