Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Protein Adsorption Using A Lattice Toy Model, Ari J. Weiland May 2016

Protein Adsorption Using A Lattice Toy Model, Ari J. Weiland

Macalester Journal of Physics and Astronomy

Protein adsorption is an important subfield of Biophysics particularly relevant in medical science. Using a computational simulation with a basic but configurable two-dimensional square lattice model of approximate amino acid interactions, I investigated the entropic effects of protein adsorption on a weakly attractive surface. These simulations allow for a precise calculation of the partition functions of these complex systems, from which I can then analyze other thermodynamic properties.


Swelling And Folding As Mechanisms Of 3d Shape Formation In Thin Elastic Sheets, Marcelo A. Dias Sep 2012

Swelling And Folding As Mechanisms Of 3d Shape Formation In Thin Elastic Sheets, Marcelo A. Dias

Open Access Dissertations

We work with two different mechanisms to generate geometric frustration on thin elastic sheets; isotropic differential growth and folding. We describe how controlled growth and prescribing folding patterns are useful tools for designing three-dimensional objects from information printed in two dimensions. The first mechanism is inspired by the possibility to control shapes by swelling polymer films, where we propose a solution for the problem of shape formation by asking the question, ``what 2D metric should be prescribed to achieve a given 3D shape?'', namely the reverse problem. We choose two different types of initial configurations of sheets, disk-like with one …


Wrinkling, Folding, And Snapping Instabilities In Polymer Films, Douglas Peter Holmes Sep 2009

Wrinkling, Folding, And Snapping Instabilities In Polymer Films, Douglas Peter Holmes

Open Access Dissertations

This work focuses on understanding deformation mechanisms and responsiveness associated with the wrinkling, folding, and snapping of thin polymer films. We demonstrated the use of elastic instabilities in confined regimes, such as the crumpling and snapping of surface attached sheets. We gained fundamental insight into a thin film's ability to localize strain. By taking advantage of geometric strain localization we were able to develop new strategies for responsive surfaces that will have a broad impact on adhesive, optical, and patterning applications. Using the rapid closure of the Venus flytrap's leafets as dictated by the onset of a snap instability as …