Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Series

Discipline
Institution
Keyword
Publication Year
Publication

Articles 1111 - 1140 of 20618

Full-Text Articles in Physics

Improving The Electrostatic Design Of The Jefferson Lab 300 Kv Dc Photogun, S.A.K. Wijethunga, M. A. Mamun, R. Suleiman, C. Hernandez-Garcia, B. Bullard, J. R. Delayen, J. Grames, G. A. Krafft, G. Palacios-Serrano, M. Poelker Jan 2022

Improving The Electrostatic Design Of The Jefferson Lab 300 Kv Dc Photogun, S.A.K. Wijethunga, M. A. Mamun, R. Suleiman, C. Hernandez-Garcia, B. Bullard, J. R. Delayen, J. Grames, G. A. Krafft, G. Palacios-Serrano, M. Poelker

Physics Faculty Publications

The 300 kV DC high voltage photogun at Jefferson Lab was redesigned to deliver electron beams with a much higher bunch charge and improved beam properties. The original design provided only a modest longitudinal electric field (Ez) at the photocathode, which limited the achievable extracted bunch charge. To reach the bunch charge goal of approximately few nC with 75 ps full-width at half-maximum Gaussian laser pulse width, the existing DC high voltage photogun electrodes and anode–cathode gap were modified to increase Ez at the photocathode. In addition, the anode aperture was spatially shifted with respect to the beamline longitudinal axis …


Existence And Non-Existence Of Doubly Heavy Tetraquark Bound States, M. Pflaumer, Luka Leskovec, S. Meinel, M. Wagner Jan 2022

Existence And Non-Existence Of Doubly Heavy Tetraquark Bound States, M. Pflaumer, Luka Leskovec, S. Meinel, M. Wagner

Physics Faculty Publications

In this work we investigate the existence of bound states for doubly heavy tetraquark systems Q¯Q¯′qq′ in a full lattice-QCD computation, where heavy bottom quarks are treated in the framework of non-relativistic QCD. We focus on three systems with quark content b¯b¯ud, b¯b¯us and b¯c¯ud. We show evidence for the existence of b¯b¯ud and b¯b¯us bound states, while no binding appears to be present for b¯c¯ud. For the bound four-quark states we also discuss the importance of various creation operators and give an estimate of the meson-meson and diquark-antidiquark percentages.


Combining Nonperturbative Transverse Momentum Dependence With Tmd Evolution, J.O. Gonzalez-Hernandez, T. C. Rogers, N. Sato Jan 2022

Combining Nonperturbative Transverse Momentum Dependence With Tmd Evolution, J.O. Gonzalez-Hernandez, T. C. Rogers, N. Sato

Physics Faculty Publications

Central to understanding the nonperturbative, intrinsic partonic nature of hadron structure are the concepts of transverse momentum dependent (TMD) parton distribution and fragmentation functions. A TMD factorization approach to the phenomenology of semi-inclusive processes that includes evolution, higher orders, and matching to larger transverse momentum is ultimately necessary for reliably connecting with phenomenologically extracted nonperturbative structures, especially when widely different scales are involved. In this paper, we will address some of the difficulties that arise when phenomenological techniques that were originally designed for very high energy applications are extended to studies of hadron structures, and we will solidify the connection …


Magnetic Field Mapping Of 1.3 Ghz Superconducting Radio Frequency Niobium Cavities, Ishwari P. Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich Jan 2022

Magnetic Field Mapping Of 1.3 Ghz Superconducting Radio Frequency Niobium Cavities, Ishwari P. Parajuli, Gianluigi Ciovati, Jean R. Delayen, Alex V. Gurevich

Physics Faculty Publications

Niobium is the material of choice to build superconducting radio frequency (SRF) cavities, which are fundamental building blocks of modern particle accelerators. These cavities require a cryogenic cool-down to ~2 - 4 K for optimum performance minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the significant contributor to residual losses is trapped magnetic flux. The flux trapping mechanism depends on different factors, such as surface preparations and cool-down conditions. We have developed a diagnostic magnetic field scanning system (MFSS) using Hall probes and anisotropic magneto-resistance sensors to …


Preliminary Results Of Magnetic And Temperature Map System For 3 Ghz Superconducting Radio Frequency Cavities, Ishwari Parajuli, Bashu Khanal, Gianluigi Ciovati, Jean Delayen, Alex Gurevich Jan 2022

Preliminary Results Of Magnetic And Temperature Map System For 3 Ghz Superconducting Radio Frequency Cavities, Ishwari Parajuli, Bashu Khanal, Gianluigi Ciovati, Jean Delayen, Alex Gurevich

Physics Faculty Publications

Superconducting radio frequency (SRF) cavities are fundamental building blocks of modern particle accelerators. When we cool these cavities at cryogenic temperature ~2 – 4 K, we can get optimum performance by minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the leading sources of residual losses in SRF cavities is trapped magnetic flux. The flux trapping mechanism depends on different surface preparations and cool-down conditions. We have designed, developed, and commissioned a combined magnetic (B) and temperature (T) mapping system using anisotropic magneto-resistance (AMR) sensors and carbon resistors …


Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen Jan 2022

Direct Current Magnetic Hall Probe Technique For Measurement Of Field Penetration In Thin Film Superconductors For Superconducting Radio Frequency Resonators, Iresha Harshani Senevirathne, Alex Gurevich, Jean Delayen

Physics Faculty Publications

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without …


Magnetic Structure Of Few-Nucleon Systems At High Momentum Transfers In A Chiral Effective Field Theory Approach, A. Gnech, R. Schiavilla Jan 2022

Magnetic Structure Of Few-Nucleon Systems At High Momentum Transfers In A Chiral Effective Field Theory Approach, A. Gnech, R. Schiavilla

Physics Faculty Publications

The five low-energy constants (LECs) in the electromagnetic current derived in chiral effective field theory (χEFT) up to one loop are determined by a simultaneous fit to the A=2−3 nuclei magnetic moments and to the deuteron magnetic form factor and threshold electrodisintegration at backward angles over a wide range of momentum transfers. The resulting parametrization then yields predictions for the 3He/3H magnetic form factors in excellent accord with the experimental values for momentum transfers ranging up to ≈0.8 GeV/c, beyond the expected regime of validity of the χEFT approach. The calculations are based on last-generation two-nucleon interactions …


Observation Of Azimuth-Dependent Suppression Of Hadron Pairs In Electron Scattering Off Nuclei, S. J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks, M. J. Amaryan, W. R. Armstrong, H. Atac, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, F. Bossù, S. Boiarinov, K.-Th. Brinkmann, W. J. Briscoe, D. Bulumulla, V. D. Burkert, R. Capobianco, D. S. Carman, A. Celentano, V. Chesnokov, T. Chetry, G. Ciullo, P. L. Cole, M. Contalbrigo, G. Constantini, A. D' Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, S. Fegan, A. Filippi, G. Gavalian, Y. Ghandilyan, G. P. Gilfoyle, A. A. Golubenko, G. Gosta, R. W. Gothe, K. A. Griffioen, M. Guidal, M. Hattawy, T. B. Hayward, D. Heddle, A. Hobart, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. S. Jo, R. Johnston, K. Joo, S. Joosten, D. Keller, A. Khanal, M. Khandaker, W. Kim, A. Kripko, V. Kubarovsky, V. Lagerquist, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, K. Livingston, I.J.D. Macgregor, D. Marchand, V. Mascagna, B. Mckinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. I. Mokeev, P. Moran, C. Munoz Camacho, K. Neupane, D. Nguyen, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, W. Phelps, N. Pilleux, D. Pocanic, O. Pogorelko, M. Pokhrel, J. Poudel, J. W. Price, Y. Prok, B. A. Raue, T. Reed, M. Ripani, G. Rosner, F. Sabatié, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, P. Simmerling, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, H. Voskanyan, E. Voutier, X. Wei, R. Wishart, M. H. Wood, N. Zachariou, Z. W. Zhao, V. Ziegler, M. Zurek Jan 2022

Observation Of Azimuth-Dependent Suppression Of Hadron Pairs In Electron Scattering Off Nuclei, S. J. Paul, S. Morán, M. Arratia, A. El Alaoui, H. Hakobyan, W. Brooks, M. J. Amaryan, W. R. Armstrong, H. Atac, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. S. Biselli, M. Bondi, F. Bossù, S. Boiarinov, K.-Th. Brinkmann, W. J. Briscoe, D. Bulumulla, V. D. Burkert, R. Capobianco, D. S. Carman, A. Celentano, V. Chesnokov, T. Chetry, G. Ciullo, P. L. Cole, M. Contalbrigo, G. Constantini, A. D' Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, S. Fegan, A. Filippi, G. Gavalian, Y. Ghandilyan, G. P. Gilfoyle, A. A. Golubenko, G. Gosta, R. W. Gothe, K. A. Griffioen, M. Guidal, M. Hattawy, T. B. Hayward, D. Heddle, A. Hobart, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. S. Jo, R. Johnston, K. Joo, S. Joosten, D. Keller, A. Khanal, M. Khandaker, W. Kim, A. Kripko, V. Kubarovsky, V. Lagerquist, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, K. Livingston, I.J.D. Macgregor, D. Marchand, V. Mascagna, B. Mckinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. I. Mokeev, P. Moran, C. Munoz Camacho, K. Neupane, D. Nguyen, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, W. Phelps, N. Pilleux, D. Pocanic, O. Pogorelko, M. Pokhrel, J. Poudel, J. W. Price, Y. Prok, B. A. Raue, T. Reed, M. Ripani, G. Rosner, F. Sabatié, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, P. Simmerling, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, H. Voskanyan, E. Voutier, X. Wei, R. Wishart, M. H. Wood, N. Zachariou, Z. W. Zhao, V. Ziegler, M. Zurek

Physics Faculty Publications

We present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets. Relative to deuterium, the nuclear yields of charged-pion pairs show a strong suppression for azimuthally opposite pairs, no suppression for azimuthally nearby pairs, and an enhancement of pairs with large invariant mass. These effects grow with increased nuclear size. The data are qualitatively described by the gibuu model, which suggests that hadrons form near the nuclear surface and undergo multiple scattering in nuclei. These results show …


Evaluation Of Single-Cell Cavities Made Of Forged Ingot Niobium At Jefferson Lab, P. Dhakal, Bashu D. Khanal, Gianluigi Ciovati, G. R. Myneni Jan 2022

Evaluation Of Single-Cell Cavities Made Of Forged Ingot Niobium At Jefferson Lab, P. Dhakal, Bashu D. Khanal, Gianluigi Ciovati, G. R. Myneni

Physics Faculty Publications

Currently, fine grain niobium (Nb) (grain size ∼ 50 µm) and large grain Nb (grain size of a few cm) are being used for the fabrication of superconducting radio frequency (SRF) cavities. Medium grain forged ingot with grain size of a few hundred µm may be beneficial for cost-effectiveness as well as providing better performance for future SRF-based accelerators. Forged ingot Nb with medium grain size is a novel production method to obtain Nb discs used for the fabrication of superconducting radio frequency cavities. We have fabricated two 1.5 GHz single cell cavities made from forged Nb ingot with a …


Study Of ⋀N Fsi With ⋀ Quasi-Free Productions On The ³H (E, E'K⁺) X Reaction At Jlab, K. Itabashi, K. N. Suzuki, B. Pandey, K. Okuyama, T. Gogami, S. Nagao, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J.-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T. J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Milhovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P. E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng Jan 2022

Study Of ⋀N Fsi With ⋀ Quasi-Free Productions On The ³H (E, E'K⁺) X Reaction At Jlab, K. Itabashi, K. N. Suzuki, B. Pandey, K. Okuyama, T. Gogami, S. Nagao, S. N. Nakamura, L. Tang, D. Abrams, T. Akiyama, D. Androic, K. Aniol, C. Ayerbe Gayoso, J. Bane, S. Barcus, J. Barrow, V. Bellini, H. Bhatt, D. Bhetuwal, D. Biswas, A. Camsonne, J. Castellanos, J.-P. Chen, J. Chen, S. Covrig, D. Chrisman, R. Cruz-Torres, R. Das, E. Fuchey, K. Gnanvo, F. Garibaldi, T. Gautam, J. Gomez, P. Gueye, T. J. Hague, O. Hansen, W. Henry, F. Hauenstein, D. W. Higinbotham, C. E. Hyde, M. Kaneta, C. Keppel, T. Kutz, N. Lashley-Colthirst, S. Li, H. Liu, J. Mammei, P. Markowitz, R. E. Mcclellan, F. Meddi, D. Meekins, R. Michaels, M. Milhovilovic, A. Moyer, D. Nguyen, M. Nycz, V. Owen, C. Palatchi, S. Park, T. Petkovic, S. Premathilake, P. E. Reimer, J. Reinhold, S. Riordan, V. Rodriguez, C. Samanta, S. N. Santiesteban, B. Sawatzky, S. Širca, K. Slifer, T. Su, Y. Tian, Y. Toyama, K. Uehara, G. M. Urciuoli, D. Votaw, J. Williamson, B. Wojtsekhowski, S. A. Wood, B. Yale, Z. Ye, J. Zhang, X. Zheng

Physics Faculty Publications

An nnΛ is a neutral baryon system with no charge. The study of the pure Λ-neutron system such as nnΛ gives us information on the Λn interaction. The nnΛ search experiment (E12-17-003) was performed at JLab Hall A in 2018. In this article, the Λn FSI was investigated by a shape analysis of the 3H(e, e′K+)X missing mass spectrum, and a preliminary result for the Λn FSI study is given.


Coupled Dynamics Of Spin Qubits In Optical Dipole Microtraps: Application To The Error Analysis Of A Rydberg-Blockade Gate, L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, Charles I. Sukenik, D. V. Kupriyanov Jan 2022

Coupled Dynamics Of Spin Qubits In Optical Dipole Microtraps: Application To The Error Analysis Of A Rydberg-Blockade Gate, L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, Charles I. Sukenik, D. V. Kupriyanov

Physics Faculty Publications

Single atoms in dipole microtraps or optical tweezers have recently become a promising platform for quantum computing and simulation. Here we report a detailed theoretical analysis of the physics underlying an implementation of a Rydberg two-qubit gate in such a system—a cornerstone protocol in quantum computing with single atoms. We focus on a blockade-type entangling gate and consider various decoherence processes limiting its performance in a real system. We provide numerical estimates for the limits on fidelity of the maximally entangled states and predict the full process matrix corresponding to the noisy two-qubit gate. We consider different excitation geometries and …


Updated Analysis Of An Unexpected Correlation Between Dark Matter And Galactic Ellipticity, D. M. Winters, Alexandre Deur, X. Zheng Jan 2022

Updated Analysis Of An Unexpected Correlation Between Dark Matter And Galactic Ellipticity, D. M. Winters, Alexandre Deur, X. Zheng

Physics Faculty Publications

We investigate a correlation between the dark matter content of elliptical galaxies and their ellipticity ϵ that was initially reported in 2014. We use new determinations of dark matter and ellipticities that are posterior to that time. Our data set consists of 237 elliptical galaxies passing a strict set of criteria that selects a homogeneous sample of typical elliptical galaxies. We find a relation between the mass-to-light ratio and ellipticity ϵ that is well fitted by M/L = (14.1 ± 5.4)ϵ, which agrees with the result reported in 2014. Our analysis includes 135 galaxies that were not in …


Beam-Recoil Transferred Polarization In K+Y Electroproduction In The Nucleon Resonance Region With Clas12, D. S. Carman, A. D'Angelo, L. Lanza, V. I. Mokeev, K. P. Adhikari, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, S. Boiarinov, V. Ziegler Jan 2022

Beam-Recoil Transferred Polarization In K+Y Electroproduction In The Nucleon Resonance Region With Clas12, D. S. Carman, A. D'Angelo, L. Lanza, V. I. Mokeev, K. P. Adhikari, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, N. A. Baltzell, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, S. Boiarinov, V. Ziegler

Physics Faculty Publications

Beam-recoil transferred polarizations for the exclusive electroproduction of K + Λ and K + Σ0 final states from an unpolarized proton target have been measured using the CLAS12 spectrometer at Jefferson Laboratory. The measurements at beam energies of 6.535 and 7.546 GeV span the range of four-momentum transfer Q2 from 0.3 to 4.5 GeV2 and invariant energy W from 1.6 to 2.4 GeV, while covering the full center-of-mass angular range of the K+. These new data extend the existing hyperon polarization data from CLAS in a similar kinematic range but from a significantly larger dataset. …


Collinear Factorization At Subasymptotic Kinematics And Validation In A Diquark Spectator Model, Juan V. Guerrero, Alberto Accardi Jan 2022

Collinear Factorization At Subasymptotic Kinematics And Validation In A Diquark Spectator Model, Juan V. Guerrero, Alberto Accardi

Physics Faculty Publications

We revisit the derivation of collinear factorization for Deep Inelastic Scattering at subasymptotic values of the four-momentum transfer squared, where the masses of the particles participating in the interaction cannot be neglected. By using an inclusive jet function to describe the scattered quark final state, we can restrict the needed parton kinematic approximations just to the four-momentum conservation of the hard scattering process, and explicitly expand the rest of the diagram in powers of the unobserved parton transverse momenta rather than neglecting those. This procedure provides one with more flexibility in fixing the virtuality of the scattered and recoiling partons …


𝒯, 𝒫-Odd Effects In The Luoh⁺ Cation, Daniel E. Maison, Leonid V. Skripnikov, Gleb Penyazkov, Matt Grau, Alexander N. Petrov Jan 2022

𝒯, 𝒫-Odd Effects In The Luoh⁺ Cation, Daniel E. Maison, Leonid V. Skripnikov, Gleb Penyazkov, Matt Grau, Alexander N. Petrov

Physics Faculty Publications

The LuOH+ cation is a promising system to search for manifestations of time reversal and spatial parity violation effects. Such effects in LuOH+ induced by the electron electric dipole moment eEDM and the scalar-pseudoscalar interaction of the nucleus with electrons, characterized by ks constant, in LuOH+ are studied. The enhancement factors, polarization in the external electric field, hyperfine interaction, and rovibrational structure are calculated. The study is required for the experiment preparation and extraction of the eEDM and ks values from experimental data.


Magnetic Flux Expulsion In Superconducting Radio-Frequency Niobium Cavities Made From Cold Worked Niobium, Bashu D. Khanal, S. Balachandran, S. Chetri, P. J. Lee, P. Dhakal Jan 2022

Magnetic Flux Expulsion In Superconducting Radio-Frequency Niobium Cavities Made From Cold Worked Niobium, Bashu D. Khanal, S. Balachandran, S. Chetri, P. J. Lee, P. Dhakal

Physics Faculty Publications

Trapped residual magnetic field during the cooldown of superconducting radio frequency (SRF) cavities is one of the primary source of RF residual losses leading to lower quality factor. Historically, SRF cavities have been fabricated from high purity fine grain niobium with grain size ~50 - 100 μm as well as large grain with grain size of the order of few centimeters. Non-uniform recrystallization of fine-grain Nb cavities after the post fabrication heat treatment leads to higher flux trapping during cooldown, hence the lower quality factor. We fabricated two 1.3 GHz single cell cavities from cold-worked niobium from different vendors and …


Lower Temperature Annealing Of Vapor Diffused Nb3Sn For Accelerator Cavities, Jayendrika K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini Jan 2022

Lower Temperature Annealing Of Vapor Diffused Nb3Sn For Accelerator Cavities, Jayendrika K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini

Physics Faculty Publications

Nb3Sn is a next-generation superconducting material for the accelerator cavities with higher critical temperature and superheating field, both twice compared to Nb. It promises superior performance and higher operating temperature than Nb, resulting in significant cost reduction. So far, the Sn vapor diffusion method is the most preferred and successful technique to coat niobium cavities with Nb3Sn. Although several post-coating techniques (chemical, electrochemical, mechanical) have been explored to improve the surface quality of the coated surface, an effective process has yet to be found. Since there are only a few studies on the post-coating heat treatment …


Field Shielding Of NBT��N Based Multilayer Structure For Accelerating Cavities, Iresha Harshani Senevirathne, Jean R. Delayen, Alex Gurevich, D. R. Beverstock, A.-M. Valente-Feliciano Jan 2022

Field Shielding Of NBT��N Based Multilayer Structure For Accelerating Cavities, Iresha Harshani Senevirathne, Jean R. Delayen, Alex Gurevich, D. R. Beverstock, A.-M. Valente-Feliciano

Physics Faculty Publications

Over the past few decades, bulk niobium (Nb) has been the material of choice for superconducting radio frequency (SRF) cavities used in particle accelerators to achieve higher accelerating gradients and lower RF losses. Multi-layer (SIS) structures consisting of alternating thin layers of superconductor(S) and insulator(I) deposited on a bulk Nb have been proposed to enhance the peak surface magnetic field and sustain a higher accelerating gradient. In this study, multilayers based NbTiN and AlN deposited on bulk Nb are used to test the proposed enhancement using the DC magnetic Hall probe technique. The technique detects a penetrating magnetic field through …


Improved Electrostatic Design Of The Jefferson Lab 300 Kv Dc Photogun And The Minimization Of Beam Deflection, M. A. Mamun, D. B. Bullard, J. R. Delayen, J. M. Grames, C. Hernandez-Garcia, Geoffrey A. Krafft, M. Poelker, R. Suleiman, S.A.K. Wijethunga Jan 2022

Improved Electrostatic Design Of The Jefferson Lab 300 Kv Dc Photogun And The Minimization Of Beam Deflection, M. A. Mamun, D. B. Bullard, J. R. Delayen, J. M. Grames, C. Hernandez-Garcia, Geoffrey A. Krafft, M. Poelker, R. Suleiman, S.A.K. Wijethunga

Physics Faculty Publications

An electron beam with high bunch charge and high repetition rate is required for electron cooling of the ion beam to achieve the high luminosity required for the proposed electron-ion colliders. An improved design of the 300 kV DC high voltage photogun at Jefferson Lab was incorporated toward overcoming the beam loss and space charge current limitation experienced in the original design. To reach the bunch charge goal of ~ few nC within 75 ps bunches, the existing DC high voltage photogun electrodes and anode-cathode gap were modified to increase the longitudinal electric field (Ez) at the photocathode. The anode-cathode …


Samples For 3rd Harmonic Magnetometry Assessment Of Nbtin-Based Sis Structures, D.R. Beverstock, C.Z. Antoine, Jean R. Delayen, D. Manos, Iresha Harshani Senevirathne, J. K. Spradlin, A-M. Valente-Feliciano Jan 2022

Samples For 3rd Harmonic Magnetometry Assessment Of Nbtin-Based Sis Structures, D.R. Beverstock, C.Z. Antoine, Jean R. Delayen, D. Manos, Iresha Harshani Senevirathne, J. K. Spradlin, A-M. Valente-Feliciano

Physics Faculty Publications

In the quest for alternative superconducting materials to bring accelerator cavity performance beyond the bulk niobium (Nb) intrinsic limits, a promising concept uses superconductor-insulator-superconductor (SIS) thin film structures that allows magnetic flux shielding in accelerator cavities to higher fields [1]. Candidate materials for such structures are NbTiN as the superconductor and AlN as the insulator. We have demonstrated high quality NbTiN and AlN deposited by reactive DC magnetron sputtering (DCMS), both for individual layers and multilayers. Interface quality has been assessed for bilayer stacks with 250 nm NbTiN layers and AlN thicknesses from 30 nm down to1 nm. These SIS …


Bunch Length Measurements At The Cebaf Injector At 130 Kv, Sunil Pokharel, M. W. Bruker, J. M. Grames, A. S. Hofler, R. Kazimi, Geoffrey A. Krafft, S. Zhang Jan 2022

Bunch Length Measurements At The Cebaf Injector At 130 Kv, Sunil Pokharel, M. W. Bruker, J. M. Grames, A. S. Hofler, R. Kazimi, Geoffrey A. Krafft, S. Zhang

Physics Faculty Publications

In this work, we investigated the evolution in bunch length of beams through the CEBAF injector for low to high charge per bunch. Using the General Particle Tracer (GPT), we have simulated the beams through the beamline of the CEBAF injector and analyzed the beam to get the bunch lengths at the location of chopper. We performed these simulations with the existing injector using a 130 kV gun voltage. Finally, we describe measurements to validate these simulations. The measurements have been done using chopper scanning technique for two injector laser drive frequency modes: one with 500 MHz, and another with …


Solutions For Fermi Questions, January 2022: Question 1: Snow Volume; Question 2: Longbow Arrow Velocity, Larry Weinstein Jan 2022

Solutions For Fermi Questions, January 2022: Question 1: Snow Volume; Question 2: Longbow Arrow Velocity, Larry Weinstein

Physics Faculty Publications

No abstract provided.


A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić Jan 2022

A Laser Frequency Transverse Modulation Might Compensate For The Spectral Broadening Due To Large Electron Energy Spread In Thomson Sources, Vittoria Petrillo, Illya Drebot, Geoffrey Krafft, Cesare Maroli, Andrea R. Rossi, Marcello Rossetti Conti, Marcel Ruijter, Balša Terzić

Physics Faculty Publications

Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard …


Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni Jan 2022

Perspectives On Determinism In Quantum Mechanics: Born, Bohm, And The 'Quantal Newtonian' Laws, Viraht Sahni

Publications and Research

Quantum mechanics has a deterministic Schrödinger equation for the wave function. The Göttingen-Copenhagen statistical interpretation is based on the Born Rule that interprets the wave function as a ‘probability amplitude’. A precept of this interpretation is the lack of determinism in quantum mechanics. The Bohm interpretation is that the wave function is a source of a field experienced by the electrons, thereby attributing determinism to quantum theory. In this paper we present a new perspective on such determinism. The ideas are based on the equations of motion or ‘Quantal Newtonian’ Laws obeyed by each electron. These Laws, derived from the …


The Hitran2020 Molecular Spectroscopic Database, I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Canè, A. G. Császár, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.M. Hartmann, V.- M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H.S.P. Müller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. Vander Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S. N. Yurchenko Jan 2022

The Hitran2020 Molecular Spectroscopic Database, I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V.I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Canè, A. G. Császár, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.M. Hartmann, V.- M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N.N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H.S.P. Müller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tóbiás, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, J. Vander Auwera, I.A. Vasilenko, A.A. Vigasin, G.L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, S. N. Yurchenko

Chemistry & Biochemistry Faculty Publications

The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. …


Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


Normative Data On The Foveal Avascular Zone In A Young Healthy Irish Population Using Optical Coherence Tomography Angiography, Susan M. O'Shea, Veronica O'Dwyer, Grainne Scanlon Jan 2022

Normative Data On The Foveal Avascular Zone In A Young Healthy Irish Population Using Optical Coherence Tomography Angiography, Susan M. O'Shea, Veronica O'Dwyer, Grainne Scanlon

Articles

Purpose: To establish normative data on the size, shape and vascular profile of the foveal avascular zone (FAZ) in a young, healthy, Irish population, using the Cirrus 5000 HD-OCT. Certain diseases may alter FAZ appearance. Normative databases provide normal baseline values for comparison, thus improving diagnostic ability.

Methods: One hundred and fifty-four subjects aged 18–35 years old were recruited. Superficial FAZ area, diameter, circularity, ganglion cell layer, central macular thickness (CMT), vascular perfusion and density were measured using the Cirrus 5000. Axial length was measured with the IOL Master and blood pressure was measured using the Omron sphygmomanometer. …


Spin Hall Effect Of Vorticity, Edward Schwartz, Hamed Vakili, Moaz Ali, Alexey Kovalev Jan 2022

Spin Hall Effect Of Vorticity, Edward Schwartz, Hamed Vakili, Moaz Ali, Alexey Kovalev

Department of Physics and Astronomy: Faculty Publications

Using mapping between topological defects in an easy-plane magnet and electrical charges, we study interplay between vorticity and spin currents. We demonstrate that the flow of vorticity is accompanied by the transverse spin current generation; an effect which can be termed as the spin Hall effect of vorticity. We study this effect across the BKT transition and establish the role of dissipation and spin nonconservation in the crossover from spin superfluidity to diffusive spin transport. Our results pave the way for low power computing devices relying on vorticity and spin flows that can propagate over long distances.


Vortices And Dust Devils As Observed By The Mars Environmental Dynamics Analyzer Instruments On Board The Mars 2020 Perseverance Rover, Brian Jackson Jan 2022

Vortices And Dust Devils As Observed By The Mars Environmental Dynamics Analyzer Instruments On Board The Mars 2020 Perseverance Rover, Brian Jackson

Physics Faculty Publications and Presentations

An important and perhaps dominant source of dust in the Martian atmosphere, dust devils play a key role in Mars' climate. Data sets from previous landed missions have revealed dust devil activity, constrained their structures, and elucidated their dust-lifting capacities. However, each landing site and observational season exhibits unique meteorological properties that shape dust devil activity and illuminate their dependence on ambient conditions. The recent release of data from the Mars Environmental Dynamics Analyzer (MEDA) instrument suite on board the Mars 2020 Perseverance rover promises a new treasure trove for dust devil studies. In this study, we sift the time …


Bias Impedes Progress In Physical Biology, Consciousness Studies And Quantum Gravity, Maurice Goodman Jan 2022

Bias Impedes Progress In Physical Biology, Consciousness Studies And Quantum Gravity, Maurice Goodman

Articles

If scientists hope to make progress in consciousness studies they needs to accept that biased judgments have a major influence on the sciences, how we divide them up, how they are funded and this, in turn, has a profound impact on progress. The imbalance in funding, resulting from bias, in favour of the life and health sciences needs to be addressed as does why perversely little of this funding is devoted to a physics explanation of self-organisation and life on the mesoscopic scale? While life (the cell) is an outstanding example of self-organisation on the mesoscopic scale we need to …